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Scatter Plot of the PLS q-RASAR model

Radar Plot of the PLS q-RASAR Model 4
SCBO 2, s I
15 .§ T e
nCsp2 1 PDI Pl g e
%% Y L
0.5 ! el
-
g ’ 0 1 2 3 4 5
X2sol 0.5 max_conj_path Opsersed pECI
o Train o Test
2 ®
CVsim b— / nArCo ®

o .
@
Eta _epsi 2 ta_ sh p b f
nTrain=133  R?,.,;,=0.695 Q%,,=0.649  MAEq,i,=0.406 pDTCc

nTest = 44 Q%,=0.607 Q%,=0.606  MAEqp.s=0.523 ‘W



Surface Plot of Pred_Residual

Surface Plot of Resxdual

Pred_Residual Residual
W2 | KRRl
| REN ot
[ RER) mr-
moe-t £o-1
@o-o [o-0
Wo-o me-o
W0 B0
| BES .,1 R}
| BEE [ B
Pred_Residual

m-2

.|-|

|-

go-1

[@o-0

mo-o

| BE

o,

DIC

~

3D-Surface Plots to
correlate under-
prediction and over-
prediction with the
level of toxicity and
variation of
Important descriptor
values




Predictions generated by the model in different clusters — an
assessment of the “global” performance
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SHAP Analysis to identify the important features of the Multilayer Perceptron g- ]
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Comparison with the previous QSAR models

P N
Training set statistics Test set statistics

Models ATrain - Rrain- Qoo™ MAErin nTest Qp,” Qr2” MAEr., Comment

Nandy et al. 2013 37/38  0.710/0.720 0.608/0.580 — 14/13  0.689/0.580 — — The dataset size is small; it used 3D

(ref. 58) descriptors which requires
optimization

Dearden et al. 204 0.496 0.459 — — — — — External validation not reported

2015 (ref. 60) ]

Chayawan et al. — — — — — — — — Developed various QSAR models

2022 (ref. 68) based on different reaction
mechanisms

Manhas et al. 20 0.698 0.598 — 10 0.594 — — The dataset size is small; performed

2022 (ref. 69) only using Michael acceptors

Our PLS QSAR 133 0.696 0.644 0.410 47 0.526 0.524  0.562 It used 2D descriptors; considered

model diverse structures; reproducible, B
transferable

Our PLS g- 133 0.695 0.649 0.406 44° 0.607 0.606  0.523 It used 2D and similarity-based B

RASAR model descriptors; considered diverse

structures; reproducible, transferable

“ Three compounds were omitted due to their prediction outlier nature as per the DTC plot.
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Java-based expert system
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I' Available from:
. SKin Sensitizer https://sites.google.com/jadavpuruniversit
Calculator v 1.0 L y.in/dtc-lab-software/home

This tool quickly computes the quantitative skin sensitization potential of query
chemical(s) in terms of pEC3 using a PLS q-RASAR model and states whether )
a particular query compound is toxic, non-toxic, or borderline. It also checks the
AD status of the query compound(s) using the leverage approach and identifies
the outliers.
Software developed by Arkaprava Banerjee (arka.banerjeel6@gmail.com) ) ‘
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Ervironmental chemicals and contaminants cause a wide amay of harmful implications to temestrial and
aquatic life which ranges from skin sensitization to acute oral tomicity. The current study aims to assess
the quantitative kin sensitization potential of 3 large set of industrial and emdronmental chemicaks acting
through different mechanisms using the nowel quantitative Read -Across Structure—Actiity Relationship
la-RASAR) approach. Based on the identified important set of structural and physicocherical features,
Read -Acnoss-hased hyperparameters were optimized using the training et compounds followed by the
calculation of similwrity and emor-based RASAR descriptors. Data fusion, further feature selection, and
removal of prediction confidence outliers were performed to generate 3 partial least squares [PLE] q-
RASAR model, followed by the application of varous Machine Learning (ML took to check the quality of
predictions. The PLS model was found to be the best among different models. A simple user-friendly »
Java-based software tool was developed bazed on the PLS model which effidently predicts the toxddty
valuels) of query com pound(s] along with their status of Applicability Dornain [AD] in terms of leverage
values. This model has been developed using structurally diverse compounds and ks expected to predict |
efficiently and quantitatively the skin sensitization potential of environmental chemicals to estimate their
rac ilespi occupational and health hazards.
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