XXX Symposium on Bioinformatics & Computer-Aided Drug Discovery September 16-18, 2024

Protein 3D Structure Identification by AlphaFold: a Physics-Based *Prediction* or *Recognition* Using Huge Databases?

Alexei V. Finkelstein

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia Biology Department, Lomonosov Moscow State University, Moscow, Russia

Dmitry N. Ivankov

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia

E-mail: afinkel@vega.protres.ru

Two main problems of protein folding

«Protein folding problem» Nº1:

HOW a protein can fold spontaneously so fast?

Solved: "Folding funnel" with phase separation

(Finkelstein, Badretdinov, 1997-98; Garbuzynskiy et al., 2013)

«Protein folding problem» Nº2:

Predict 3-dimensional structure of a protein from its amino acid sequence

(Senior et al.; Jumper et al.)

AlphaFold – great success

A. Senior, J. Jumper, et al., 2018-21

- 1) What is the main reason for this success?
- 2) What does AlphaFold do:
- does it *predict* protein structure from its a.a. sequence

& physics of protein chain folding?

or

– recognize this structure by the similarity of large pieces of its a.a. sequence with "joined" large pieces of sequences that already are in PDB?

"Novel fold": When it is impossible to superimpose *any* of greatest already known 3D structures onto this "novel fold"

One of many dozens of examples of superposition of pieces of already known 3D structures onto a "novel fold"

"Novel fold" (6VR4, chain A - target T1035 from CASP 14 (2020)) as a combination of fragments of 3 already known structures available to AlphaFold during the training:

1GB3, chain A; 5A29, chain A; 5W40, chain B.

AlphaFold: neural network

Hidden layers (many dozens)

 $W_{i,j}$, $W_{m,n}$ - "weights" (adjustable parameters): In Alphafold: ~21,000,000 But physics of atomic interactions in proteins only needs ~43,200

So, ~20,955,000 parameters are "trained" not in physics, but?

KNOWN: SIMILAR SEQUENCES → VERY SIMILAR STRUCTURES

but only – with identity ≥15-20%

Lesk, A.M., Chothia, C. Phil. Trans. R. Soc. Lond. A 317, 345–356 (1986).

WHAT IDENTITY WITH A "NEW" SEQUENCE IS EXPECTED - HAVING MODERN HUGE DATABASES?

KNOWN: SIMILAR SEQUENCES → VERY SIMILAR STRUCTURES

but only – with identity

≥15-20%

Lesk, A.M., Chothia, C. Phil. Trans. R. Soc. Lond. A 317, 345–356 (1986).

WHAT IDENTITY WITH A "NEW" SEQUENCE IS EXPECTED - HAVING MODERN HUGE DATABASES?

WHAT IDENTITY WITH A "NEW" SEQUENCE IS EXPECTED - HAVING MODERN HUGE DATABASES?

The probability that two "random" sequences of n a.a. residues, each of which occurres with a probability p (in proteins, ~1/20), coincide in m positions, follows from $\frac{5\%}{6}$

$$P_{m,pn} = \frac{(pn)^m}{m!} e^{-pn}$$

Poisson distribution

WHAT IDENTITY WITH A "NEW" SEQUENCE IS EXPECTED - HAVING MODERN HUGE DATABASES?

The probability that two "random" sequences of n a.a. residues, each of which occurres with a probability p (in proteins, ~1/20), coincide in m positions, follows from

 $P_{m,pn} = \frac{(pn)^m}{m!} e^{-pn}$

pn — average (pairwise comparison)

Poisson distribution p << 1 $\sqrt{2\pi np}$ n >> 1 m >> np?

ACDEFGHI**K**LMNPQRSTVWY

5%

KPYDSTFQKHILAMNPQRST \implies Expected for 1 pairwise comparison: $n \times 5\%$

Could we expect $n \times 20\%$ for 1 out of 1000000 pairwise comparisons?

acdefghiKlmnpqrstvwy acdefghiklmnpqrstvwy acdefghiklmnpqrstvwy kpydstfqKhilamnpqrst kpDdstfqshilamnpqrst kpydFtfqhLilamnpqrst 1

and having shifts, insertions, deletions – when comparing sequences?

ACDE---FGHIKLMNPORSTVWY

MNPDATFEPYDSTFQKHILA--MNVWRSTDSTF

WHAT IDENTITY WITH A "NEW" SEQUENCE IS EXPECTED -HAVING MODERN HUGE DATABASES?

The probability that two "random" sequences of *n* a.a. residues, each of which occurres with a probability p (in proteins, ~1/20), coincide in m positions, follows from

probability
$$m{p}$$
 (in proteins, ~1/20), coincide in $m{m}$ positions, follows from $m{P_{m,pn}} = rac{(pn)^m}{m!} m{e}^{-pn}$ $m{pn}$ average (pairwise comparison) Poisson distribution

because $m! pprox (m/e)^m$ (Stirling's eq.), then $P_{m,pn} pprox \left(\frac{ep}{m/n}\right)^m e^{-pn}$ When 1 sequence is compared <u>not</u> with 1, but with N others, then $P_{m,pn}$ -N=1 gives

the maximally expected number of matches (M) with the "most similar" of them. Thus, the expected residue identity $\frac{|V|/n}{ne}$ follows from the equation $\left(\frac{\frac{M/n}{ne}}{ne}\right) \ln\left(\frac{\frac{M/n}{ne}}{ne}\right) + \frac{1}{e} = \left(\frac{1}{nne}\right) \ln(N)$

expected
$$M/n$$

no chain shifts, insertions, $n=100 \text{ (domain)}$, $N=1: M/n = p = 5\%$
 $n=100 \text{ (domain)}$, $N\sim 150000 \text{ (PDB)}$: $M/n = 20\%$

n=100 (domain), *N*~19000000 (UniProt): *M/n* = 24% deletions with chain shifts. insertions, deletions $N\sim150000 \text{ (PDB)}*10^6: \frac{M/n}{}=25\%$ *n*=100 (domain), n=100 (domain), N~190000000 (UniProt)*10⁶: M/n = 32% 8" deletions

WITH MODERN DATABASES, ALPHAFOLD CAN RECOGNIZE PROTEIN STRUCTURE

NOTE:

Bioinformatics is much more important than physics for AlphaFold predictions:

- is a *contradicting to physics* prediction of a *non-compact* structure of separate collagen-like (Gly-Pro-Pro)₁₃ chain, which **lacks interactions** that can **support** it. In collagen, such a chain is fixed by **surrounding** chains:

- but these have been <u>not</u> introduced to AlphaFold, asked to predict a structure of the **separate** (Gly-Pro-Pro)₁₃ chain!
- Knowing similar complexes, AlphaFold makes correct bioinformatic recognition, though contradicting to physics of this separate chain.

A LITTLE PHILOSOPHY

2) Does AlphaFold know protein physics?

- it knows <u>only</u> the **frequency of occurrence** in **PDB** of elements of protein structures, which is **related to their stability** (Finkelstein et al., Proteins, 23: 142-150, 1995)
- AlphaFold relies on bioinformatics, and (yet) knows nothing about the process of protein folding

A LITTLE PHILOSOPHY

1) "Predict fold" = "Predict fold<u>ing</u>" (folding rate)

result

AlphaFold

process

(Garbuzynskiy et al,. PNAS, **110**:147–150, 2013; Ivankov, Finkelstein, Biomolecules **10**:E250, 2020)

2) Does AlphaFold know protein physics?

- it knows <u>only</u> the **frequency of occurrence** in **PDB** of elements of protein structures, which is **related to their stability** (Finkelstein et al., Proteins, 23: 142-150, 1995)

- AlphaFold relies on bioinformatics, and (yet) knows nothing about the process of protein

folding

A LITTLE PHILOSOPHY

1) "Predict fold" = "Predict fold<u>ing</u>" (folding rate)

<u>result</u>

AlphaFold

process

(Garbuzynskiy et al,. PNAS, **110**:147–150, 2013; Ivankov, Finkelstein, Biomolecules **10**:E250, 2020)

2) Does AlphaFold know protein physics?

- it knows <u>only</u> the **frequency of occurrence** in **PDB** of elements of protein structures, which is **related to their stability** (Finkelstein et al., Proteins, 23: 142-150, 1995)

 AlphaFold relies on bioinformatics, and (yet) knows nothing about the process of protein folding

3) Does a **good prediction** mean a **correct understanding**?

An example from the history of astronomy

GOOD PREDICTION <> CORRECT UNDERSTANDING

Priests of Egypt and Babylon:

GOOD PREDICTIONS of eclipses of the Sun and Moon (based on huge archives spanning 2500 years!),

BUT: *fundamentally* WRONG UNDERSTANDING (The Earth is flat!)

PTOLEMAEUS (using huge archives):

GOOD PREDICTION

AlphaFold

WRONG UNDERSTANDING of the PROCESS!

GOOD PREDICTION <=> CORRECT UNDERSTANDING

Copernicus:

Mol. dynamics

(BUT - SMALL ERROR: in parameters),

IMPERFECT (worse than by Ptolemaeus)
PREDICTION OF PLANETARY MOVEMENTS

Kepler, Newton:

CORRECT UNDERSTANDING (exact equations of celestial mechanics!),

PERFECT PREDICTION OF MOVEMENTS OF PLANETS,

COMETS, ROCKETS AND EVERYTHING ELSE

The basis of AlphaFold's great success is a skillful usage of huge protein databases collected during 60 years and clearly presenting evolutionary conservation of stable features of 3D protein structures.

Now AlphaFold gives a possibility to predict, or rather recognize stable protein structures from their a.a. sequences without considering the process of protein folding that creates these structures.

We emphasize that the this study <u>does not</u> diminish the merit and utility of AlphaFolds; it only explains the basis of their success.

On the basis of AlphaFold:

RoseTTAFold:

Anishchenko I., ..., Baker D. - De novo protein **design** by deep network hallucination. *Nature* **600**, 547–552 (2021).

https://doi.org/10.1038/s41586-021-04184-w.

AF-multimer:

Gao, M., ..., Skolnick J. - AF2Complex predicts direct physical **interactions in multimeric proteins** with deep learning. *Nat Commun* **13**, 1744 (2022). https://doi.org/10.1038/s41467-022-29394-2

OpenFold:

Ahdritz G., ..., AlQuraishi M. - OpenFold: retraining AlphaFold2 yields new **insights into its learning** mechanisms and capacity for generalization. *Nat Methods* **21**, 1514–1524 (2024).

https://doi.org/10.1038/s41592-024-02272-z

<u>AlphaFold 3</u>:

Abramson J., ..., Jumper J.M. - Accurate structure prediction of **biomolecular interactions** with AlphaFold 3. *Nature* **630**, 493–500 (2024).

https://doi.org/10.1038/s41586-024-07487-w

etc.

Thanks for your attention!

Protein 3D Structure Identification by AlphaFold: a Physics-Based *Prediction* or *Recognition* Based on Huge Databases?

Alexei V. Finkelstein^{1,2}, Dmitry N. Ivankov³

¹Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia

²Biology Department, Lomonosov Moscow State University, Moscow, Russia

³Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia

E-mail: afinkel@vega.protres.ru

We are grateful to N.V. Dovidchenko, S.O. Garbuzynskiy, and especially J. Jumper for discussions, and the RSF (grant № 21-14-00268) for support

AlphaFold is NOT driven by physics:

AlphaFold, which is given a.a. sequence of only one of the three intertwined protein chains, recognizes its spatial structure

- which, due to its complete <u>non</u>-compactness,
 - cannot be stable on its own!

One of many dozens of examples of superposition of pieces of already known 3D structures on a novel fold

"Novel fold" (6VR4, chain A - target T1035 from CASP 14) as a combination of fragments of 3 already known structures available to AlphaFold during the training:

1GB3, chain A; 5A29, chain A; 5W40, chain B.

"Predict folding" (folding rate!) — "Predict fold"

$$k_f \simeq \exp\left\{-\left(\frac{1}{2} \div \frac{3}{2}\right)\left[L^{2/3} + 0.4\left[\frac{\Delta F}{k_B I}\right]\right]\right\} \frac{0.1}{\text{ns}}$$

Solution of the "Levinthal's paradox

Finkelstein, Badretdinov, 1997,1998; Garbuzynskiy, Ivankov, Bogatyreva, Finkelstein, PNAS, 2013

The occurrence of elements of protein structures is associated with their stability (Finkelstein et al., Proteins, 23: 142-150, 1995)

Small details of protein structures

Example:

Similar to
BoltzmannGibbs
Statistics
(F.M. Pohl, 1971)
The reason is
a selection
of stable
structures

Needed:

Old chain fold and old activity – with a completely new a.a. sequence

P.A.Alexander, Y.He, Y.Chen, J.Orban, P.N.Bryan

PNAS, 2007, 104, 11963-8

The design and characterization of two proteins with 88% sequence identity but different structure and function

Y.He, Y.Chen, P.Alexander, P.N.Bryan, J.Orban

PNAS, 2008, 105, 14412-7

NMR structures of two designed proteins with high sequence identity but different fold and function

2012 (*Structure*, 20, 283-91):

Difference: **ONE** a.a. residue!

GOOD PREDICTION <> CORRECT UNDERSTANDING

Priests of Egypt and Babylon:

GOOD PREDICTIONS of eclipses of the Sun and Moon (based on huge archives spanning 2500 years!),

BUT: *fundamentally* WRONG UNDERSTANDING (The Earth is flat!)

PROCESS!

13