XXVIII Symposium on Bioinformatics and computer-aided drug discovery

EXPLORING THE SCORING FUNCTION SPACE FOR STRUCTURE-BASED DRUG DESIGN

Gabriela Bitencourt Ferreira

Pontifical Catholic University of Rio Grande do Sul, Brazil

MOLECULAR DOCKING

MOLECULAR DOCKING

CLASSICAL SF

Table 1. Protein and Ligand Data Set Details

protein	target type	no. of ligands	no. of ligand classes	no. of cocrystals	max affinity (nM)	min affinity (nM)
Chk1	kinase	193	2	15	7	>10000
factorxa	serine protease	218	4	10	<1	5000
gyrase B	isomerase	138	3	7	4	>10000
HCV polymerase	polymerase	205	2	13	5.6	>10000
Met tRNA synthetase	synthetase	144	2	31	1	>10000
E. coli PDF	metalloprotease	199	3	2	1	>10000
Strep PDF	metalloprotease	186	3	4	<2	>10000
PPAR δ	nuclear hormone receptor	206	5	54	0.3	>10000

Table 7. Best Correlation Coefficient r between the $-\log$ Affinity (pAffinity) and Docking Score for All Programs across All Targets

program	Chk1	FXa	gyrase B	HCVP	MRS	E. coli PDF	Strep PDF	PPAR δ
Dock4	-0.33	-0.31	-0.39	0.00	-0.13	-0.38	-0.34	0.07
DockIt	-0.49	-0.19	-0.37	0.04	-0.28	-0.13	-0.30	-0.34
FlexX	-0.57	-0.31	-0.39	-0.12	-0.01	-0.42	-0.25	-0.36
Flo+	-0.44	-0.38	-0.36	-0.09	0.05	-0.27	-0.39	-0.42
Fred	-0.14	0.01	-0.13	-0.07	0.13	0.07	-0.24	0.06
Glide	-0.47	-0.08	-0.21	-0.04	0.08	-0.13	-0.12	-0.35
Gold	-0.42	-0.05	-0.14	-0.09	0.04	-0.12	-0.11	-0.43
LigandFit	-0.45	-0.13	-0.39	-0.06	-0.15	-0.21	-0.49	-0.10
MOEDock	-0.29	0.00	0.07	-0.01	-0.13	0.08	0.20	0.17
MVP	-0.26	0.10	-0.33	-0.01	-0.18	-0.17	-0.16	-0.18

WARREN, Gregory L. et al. A critical assessment of docking programs and scoring functions. Journal of medicinal chemistry, v. 49, n. 20, p. 5912-5931, 2006.

MOLECULAR DOCKING

Targeted Scoring Function

We suggest the use of targeted scoring functions, specif to the protein we are studying

Protein Space

Chemical Space

Protein Space

Scoring Function Space

$$\log(IC_{50}) = \sum_{i=0}^{N} \omega_i x_i + \sum_{j=0}^{N} \alpha_j x_j^i$$

$$\Delta G = \sum_{i=0}^{N} \omega_i x_i \quad f = \sum_{i=1}^{N} \alpha_i x_i - x_j^{-3} + \sum_{j=1}^{M} x$$

$$\Delta S = \alpha_j - x_i \sum_{i=1}^{N} x_i y_j \quad f = \alpha_j \beta_i + x$$

$$\log(K_I) = \sum_{i=0}^{N} \omega_i x_i + \sum_{j=1}^{M} \sum_{i=1}^{N} \lambda$$

Chemical Space

Scoring Function Space

Machine Learning methods

Scoring Function Space

DATA

MODEL TEST SET

MODEL TEST SET

We concluded that the use of targeted scoring functions can be a new approach to predict the binding affinity

Thank you!

g.bitencourt@edu.pucrs.br gabriela@azevedolab.net

https://azevedolab.net/

