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Anfinsen’s experiments

* Protein sequence defines 3D protein structure
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* 3D protein structure is the free energy minimum
Native
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Therefore:
* Having sequence we have all the information to predict 3D structure

 \We look for the most stable structure

Anfinsen C. et al. (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. PNAS, 47, 1309-1314.
Anfinsen C. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230.
Finkelstein A., Ptitsyn O. (2016) Protein physics.



Measures of protein 3D structure comparison

* RMSD — Root Mean Square Deviation

* TM score

 GDT_TS — Global Distance Test Total Score
* LDDT - Local Distance Difference Test

RMSD =1.55
TM-score = 0.88
GDT-TS-score = 0.86
LDDT = 0.85




Key ideas in protein structure prediction
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Lesk A., Chothia C. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J., 5, 823-826.
Finkelstein A., Ptitsyn O. (2016) Protein physics.



Key ideas in protein structure prediction
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Key ideas in protein structure prediction
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e Correlated mutations

Lidl

de Juan et al. (2013) Emerging methods in protein co-evolution. Nat. Rev. Genet., 14, 249-261.
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Key ideas in protein structure prediction

* Molecular dynamics

RMSD to native (A)
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Shaw D. et al. (2010) Atomic-level characterization of the structural dynamics of proteins. Science, 330, 341-346.

Linforff-Larsen K. et al. (2011) How fast-folding proteins fold. Science, 334, 517-520.
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Key ideas in protein structure prediction

* Homology modeling —>
. : Relaxation by
Thr.ea?d-lng _ — molecular —

* Ab initio folding m—— dynamics
* Correlated mutations —>
* Molecular dynamics . . Structure

Relaxation box contains without

potential energy clashes
function,
e.g. Amber99sb force
field

Note:
* AlphaFold uses relaxation as well.



CASP experiment

e CASP: Critical Assessment of Protein Structure Prediction
* Since 1994 bi-annual blind competition on protein structure prediction

STRUCTURE SOLVER
DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14
protein-folding contest — and its previous version'’s performance at the last CASPE.
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https://predictioncenter.org
Callaway E. (2020) "It will change everything': DeepMind's Al makes gigantic leap in solving protein structures Nature, 588, 203—-204.




AlphaFold performance in CASP14

Median Cct r.m.s.d.q; (A)
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Jumper J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583—-589.

* Deep learning algorithm
* Trained on PDB structures published before April 30, 2018
* Uses multiple sequence alignments (MSA) and PDB
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AlphaFold Experiment
r.m.s.d.qs = 0.8 A; TM-score = 0.93

AlphaFold Experiment
r.m.s.d.y, = 2.2 A; TM-score = 0.96



Questions:

 What is the main reason for this success?
* What does AlphaFold actually do:

* does it predict 3D protein structure from the physics of protein chain,

or

* does it recognize the 3D structure by the similarity of the amino acid

sequence in question to sequences with already known 3D structures?
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How do we understand physics of proteins?
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Note:

* We ask about “extra” physics that allows AlphaFold to outperform other tools



Reasons to be sceptic: physics looses to statistics

Perfect prediction in the One chain from a
absence of metal ion multimer

AlphaFold Experiment

“An intertwined homotrimer (PDB 6SKO) is correctly predicted
without input stoichiometry and only a weak template (blue is

AlphaFold Experiment predicted and green is experimental).”
r.m.s.d. = 0.59 A within 8 A of Zn

Jumper J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583—-589.



AlphaFold performance for unseen proteins

* Proteins from PDB:
* after April 30,2018
* id < 40% covering more than 1% of the sequence
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Still:
* Multiple sequence alignments were used
* There could be some structures with similar 3D structures but dissimilar sequences

Jumper J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583—-589.



What do we have from AlphaFold?

* Qutput structure

* pLDDT: per-residue predicted LDDT

* Average pLDDT

e pTM: Predicted TM-score (highly correlates with average pLDDT)

query

e AlphaFold
sequence




Do AlphaFold metrics correlate with AAG?

* Disclaimer of AlphaFold:
* “[AlphaFold] has not been validated for predicting the effect of mutations”

 However, native structure is native because it is the most stable.

* David Jones with colleagues:
* “Amino acids in the sequence that lead to low confidence predictions are less
likely to lead to a stable structures.”

https://alphafold.ebi.ac.uk/fag
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Moffat L. et al. (2021) Using AlphaFold for Rapid and Accurate Fixed Backbone Protein Design. bioRxiv, https://doi.org/10.1101/2021.08.24.457549




AlphaFold pLDDT vs. AAG

pLDDT of the Average pLDDT of
mutated residues the whole structre
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AlphaFold cannot predict the energy changes due to single mutations

Pak M. et al. (2021) Using AlphaFold to predict the impact of single mutations on protein stability and function. bioRxiv, https://www.biorxiv.org/10.1101/2021.09.19.460937




What about far distances?

Roney and Ovchinnikov:

* Hypothesis: “AlphaFold has learned an accurate potential function .

.. but
... the MISA is necessary to locate an approximate global minimum”
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Solution: “to score the plausibility of the target amino acid sequence
adopting the geometry given by the decoy structure.”

Roney J., Ovchinnikov S. (2022) State-of-the-art estimation of protein model accuracy using AlphaFold. bioRxiv, doi: 10.1101/2022.03.11.484043.



What about far distances?

» AlphaFold: if to look under the hood: e Scenarios:
* default
g ® genetc dtabases ¢ > * no MSA
= el W\ * no templates
* no MSA, no templates
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Jumper J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
Roney J., Ovchinnikov S. (2022) State-of-the-art estimation of protein model accuracy using AlphaFold. bioRxiv, doi: 10.1101/2022.03.11.484043.



What about far distances?

Set of proteins:
* “Novel fold” proteins

Median Correlations
* Decoys from Rosetta decoy set
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BUT: AlphaFold has seen both proteins’ and decoy structures: they are all in PDB

Roney J., Ovchinnikov S. (2022) State-of-the-art estimation of protein model accuracy using AlphaFold. bioRxiv, doi: 10.1101/2022.03.11.484043.



We used di

ferent set of proteins

Set of proteins:

* Structures from PDB:
* Released after April 30, 2018
* “Novel fold” proteins
* TM-score to PDB < 0.5
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s it possible to predict well with no physics?

What is the expected similarity of a random sequence S to the most
similar to it chain S' from the set X of N other random sequences?

or

s the set Xy large enough to include a sequence S’, which is so similar
to S that their 3D structures are very similar?



s it possible to predict well with no physics?

Probability that the random sequence §,, of the length n matches inm
positions another random sequence of the same length n is
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Stirling’s approximation:
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s it possible to predict well with no physics?

Domains of n ~ 100:
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Conclusions

* From structurally close proteins AlphaFold cannot choose more stable
structure at all

* AlphaFold’s ranking of structurally different proteins seems to be
comparable with other methods

* The conceptual reason of tremendous AlphaFold success is that
databases cover (almost) all protein superfamilies existing in nature

* Overall, we stick to the null hypothesis:
AlphaFold does not know energy potential function better than other
programs
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