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Frontiers in Structure Based Drug Discovery
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Empirical Potential Energy Function (Force Fields)

BMDRC

Energy — Mechanics Based Design

Harold Scheraga

PMFF
ECEPP/2,3 CHARMMnNN AMBER MM/2&3 OPLS,...,OPLS3e.. || Since 1987~2020
FF for Protein in All intra degree Most widely used || Intramolecular FF | | Good for liquid Sim. || Physics based FF
Torsion space of freedom > open source For smaller Fit to Free Energy parameters
molecular structure | | Perturbation determination
Noble Prize 2013 First in ASIA
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Martin Karplus

Peter Kollman

Norman Allinger

William Jorgensen

PMFF: Development of a Physics-Based Molecular Force Field for
Protein Simulation and Ligand Docking

Sung Bo Hwang, Chang Joon Lee, Sehan Lee, Songling Ma, Young-Mook Kang, Kwang Hwi Cho,
Su-Yeon Kim, Oh Young Kwon, Chang No Yoon, Young Kee Kang, Jeong Hyeok Yoon, Ky-Youb Nam,
Seong-Gon Kim, Youngyong In, Han Ha Chai, William E. Acree, Jr,, J. Andrew Grant, Ken D. Gibson,
Mu Shik Jhon, Harold A. Scheraga, and Kyoung Tai No*

SB Hwang, et al., J. Phys. Chem. B (2020)



Accuracy in Describing AE. AAE
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Neural Potential vs. QM-DFT Calculation

Extensibility test set

—
(=]
o

@
o

0.3 seconds on "

Esn; (kcal/mol)
s 3

N
o

o

0 20 40 60 80 100
EDFT (kcallmOI)

5

Deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn
an accurate and transferable potential for organic molecules.

DFT

52 ™ core hours

ANAKIN-ME: Accurate NeurAl networK englINe for Molecular Energies



Training of ANI-n Neural Network Potential

a Active learning sampling algorithm |p CCSD(T)*/CBS ANI-1ccx selection
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= ANI-1: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

=  ANI-1x: Less is more: Sampling chemical space with active learning

=  ANI-1ccx: Approaching coupled cluster accuracy with a general-purpose NNP through transfer learning

=  ANI-2x: Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens 8



Atomic NNP model & It’s Application to Molecule (H,O)

BMDRC

Behler and Parrinello's HDNN or HD-atomic NNP model.
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Protein-Ligand Docking Study with ANI-2x
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Manuscript in Preparation

Top ranking of docking poses in 10 X-ray crystal structures
ST D Generated .Calc. Total RMSD (A) of RMSD (A) of
Poses Time (s) Atoms ANI-2x Top 1 Emodel Top 1
1E66 44 10.23 8247 0.3538 0.3538
2FSz 512 66.27 3900 0.5232 0.9998
20F2 133 18.41 4407 0.5995 0.5995
2P2] 333 51.52 4867 0.3923 0.7912
2RGP 955 155.66 5141 0.616 1.4343
3C4F 88 13.35 4871 0.2916 0.2916
3ELS8 126 19.25 4462 0.8123 0.8679
3KL6 410 53.65 3688 0.5011 1.2538
3LAN 53 12.74 9120 0.4643 0.4643
3NY8 101 20.68 7180 0.7157 2,511

Neural network potentials have provided accurate results for intra- and

intermolecular interactions in protein-ligand complexes. Although ANI-
2x was not trained for protein structures and ionic molecules, scoring
the docking poses with ANI-2x was reasonable and we showed that
ANI-2x can Dbe applied to molecular docking simulations. These
methods can be incorporated directly into existing docking scoring
methods to select the most favorable binding pose of a ligand. These
few applications of NNP would be the start point of how machine
learning will create new trends in biosciences.

10



Fragment Molecular Orbital (FMO) for Protein Energy Calculation

BMDRC

Prof. Taikyue REE Prof. Kenichi FUKUI

How to calculate the Energy (Electron
density) of Proteins with Quantum
Chemical Calculation

-

Fragment Molecular Orbital (FMO)

Institute of MIeCuIcienc, Okazaki
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For FMO - Energy Decomposition & Structure Fragmentation

Energy Decomposition (Partitioning): the total dissociation energy D.is decomposed into a
number of physically meaningful components by dividing the interaction process between two or
more fragments A and B.

Kitaura—Morokuma or Ziegler—Rauk schemes
—De — AEeleC + AEex + AEpOl + AECT + AEmix

Structure Fragmentation: The bond energetics within a molecule is to decompose the total
energy of the molecule within a given quantum-chemical method into a sum of monoatomic and
diatomic contributions (fragments) as follows,

E = z E(A) + z E(AB) = z E(A) + = z E(AB)

A>B A#B

Fragment MO (FMO) >

A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, Kazuo Kitaura & Keiji Morokuma, Int. J. Quantum Chem., 1976, 10, 325~340
On the calculation of bonding energies by the Hartree Fock Slater method, Tom Ziegler & Arvi Rauk, Theoretica Chimica Acta, 1977, 46, 1-10
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Structure Fragmentation of Protein
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FMO based Drug Design Platform, AVENGERS

FMO Based Analysis

3D-SPIEs for PPl complexes Inhibitor complexes
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FMO for Protein-Ligand Binding Energy Calculation

X-linked inhibitor of apoptosis protein (XIAP), inhibits caspases through its (BIR) domains.

Ligand I1C5; (M) PDB (resol/A) PIEs

AVPI 0.32 1G73 (2.00) -246.078
1 >5,000 5C3H (2.65) -204.792
2 >495 5C7A (2.36) -217.849
3 55 5C7C (2.32) -220.880
4 0.64 5C84 (2.36) -257.064
5 0.22 5M6F (2.39) -241.754
6 0.16 5C83 (2.33) -247.424
7 0.15 5M6H (2.50) -246.405
8 0.044 5M6M (2.37) -246.913

th o N~ o O

Figure 1. Correlation plot between the experimentally measured binding affinity pICsy an
[ d the total PIEs as calculated by the FMO method.

Computational and Structural Biotechnology Journal 17 (2019) 1217-1225
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Analysis of PD1-PDL1 Interaction
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Analysis of SARS-CoV-2 Spike Protein & h-ACEIll Interaction

Jan. 6, 2020

In Jan, 2020

Feb.15, 2020

Feb. 19, 2020

Feb. 21, 2020

Feb. 26, 2020

Confirm Coronavirus pathogens with TEM

How the virus is transmitted is key to prevent & controlling it

SAR-CoV2 gene sequence & purified the spike protein

Structure: SARS-CoV2 spike protein bound to h-ACE2: Cryo-EM

Structure, Function, & Antigenicity of the Spike Glycoprotein: Cryo-EM

Ve

In two
months

In Mar., 2020

Apr.20, 2020

In Apr. , 2020

spike protein structure from SARS-CoV-2 on PDB

|\

r

QM calculation on Spike protein-hACE2 with the structure from PDB

p
Submit information on the import interaction points between Spike protein

\and h-ACE2 (bioRxiv: April 27): FMO (QM)

Ve

Virtual Screening for drug repositioning with hot spots: AVENGERS

baobab A1b10
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Scientific Reports | (2020) 10:16862 | https://doi.org/10.1038/s41598-020-73820-8

80R

Trp476
Prod77

Asnd79(RA479) ==

m395
$230
F26G19

Main Hotspot

Secondary
Hotspot

HCoV-NLe3

Thr359
Asp393
Asna2a
Asn4d27

Phe360
Thr363
Asp392

Lys365
Arg395

Val404
Asp407
Tyrd08
Lys411
Serd32
Leudd3 s
Glya46
Lys447
Lys465
Cysd67
Leud72

Thr433
Asn437
Tyrado
Pro470 ——
Alad71

Aspa80
Tyrd81

18



YAP-TEAD PPI Inhibitors Discovery, in Hippo Pathway

Growth control pathway

« Organ growth control, stem cell function, regeneration, and

tumor suppression

« 2. Deregulated in many cancers -> cancer initiation and
progression

Cytoplasmic
retention

“Loss of Hippo signaling and YAP overactivation

are observed in many cancer patient” 19



YAP-TEAD PPI Inhibitor Discovery (TEAD Targeting)

Features of pharmacophore
were generated from hot spot
information obtained with
FMO calculations

Features are selected within
the surface range that small
molecules can cover.

, Then Virtual Screening
Interface 3

) 7.0 M Compound DB
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235
5 i N C  Drug-like filter
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%5 a Elustering &
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i

Central Pocket Cancers 2021, 13, 4246 20



YAP-TEAD PPI Inhibitor Discovery (TEAD Pharmacophores)
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Measure Activity of BY02, BY03 by Luciferase Report Assay

Relative luciferase activity (%)
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Binding Energy Analysis of BY-02 with FMO PIE

With in 3A
amino acid

Matched with FMO
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Cancers 2021, 13, 4246
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« TEAD's binding amino acids are represented within 3A from
BYO2 docking pose.

« BYO2 was performed at FMO-DFTB3/D/PCM level with the
third order corrected density functional tight-binding (DFTB3)
method with 30B parameter set, UFF-type dispersion
correction (D), and polarizable continuum model (PCM).

« In energy minimization, the residues within 10.4 A from
ligand were included and fixed, while only the ligand was

fully flexible. .



FMO based Protein Engineering Platform, CARPET

Protein Binding Analysis-QM
QM methods are used for analyzing
the crucial interactions in target
protein with Cryo-EM structures and

construct the hot spot map on the

target protein-protein interface.
e 3D-SPIEs with QM Fragment

Molecular Orbitals (FMO)

Phylogenetic tree

Protein sequence data are used for

generating phylogenetic tree and

protein mutation pool for binding

affinity, thermal stability, and so on.

e NCBI Sequence & Meta data (pH & T)

e Phylogenetic tree with multiple
sequence analysis

Cryo EM Structure

Cryo-EM generate scattering image of
target protein complexes. The image is
converted to the electron density of the

Computational Mutagenesis

Neural Network Potential Guided
Statistical Mechanical methods are
used in performing computational

target. Then the electron density is mutagenesis and confirming the
converted to protein structure. specific properties.
e CryoSPARC: Images to electron density e Free Energy Perturbation (FEP)
e NNP/QM/MM : with electron density to I e Thermodynamic Integration (TI)

high resolution structures ROSETTA e Neural Network Potentials (NNP)




Protein Engineering with CARPET — Superoxide Dismutase

= Propose 12 Variants from 50% Thermophiles
= 12 heat-resistant SOD candidates were cloned

= Purified variants were characterized for:

v' Activity, protein quantification, heat resistance

4 Conserved Domain

Specific Residual BCM_Tm1 Tagg 266

Activity (U/mg) activity (%) Q) (O

wild type 2200 47.5 55 64
1 1708 75 65 38
2 2161 92 66 37
3 1381 86.5 67 57
4 868 89.1 51 39
5 2618 80.8 64 51
6 650 55.5 66 36
7 1641 82.7 44 50
8 1934 50.7 NaN 38
9 1857 56 NaN 56
10 1747 104.2 61 52
11 2124 24.1 63 54
12 1503 45.1 46 56
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Pharma & Chemical Industry-Quantum Computing

= Quantum computing’s ability to simulate larger, more complex molecules could be
game changing. Pharmaceutical companies should reflect on their strategic stance
to this promising new technology now.

" Pharma & chemical industry will be one of the first industries to benefit by the
impact of Quantum Computing (QC).

= Given its focus on molecular formations, pharma as an industry is a natural
candidate for QC.

" Since molecules are actually qguantum systems, systems that are based on
guantum physics, QC is expected to be able to predict and simulate the structure,
properties, and behavior of these molecules more effectively than conventional

computing can.
June 2021, McKinsey & Company

27



Quantum Computing Ecosystem in Drug Discovery

Pharmacos: For Drug Discovery & Development Startups: Provide Quantum Algorithm for Drug Design
Hardware providers: Quantum Computer & Languages
QC research consortia with Pharmacos (>10bn €) with QC startups with
pharmaco participation known QC activity pharmaco partnerships
'_i = AbbVie I—l I = Qsimulate |
| : CQuPharm I — | | = Amgen I | ‘ I I+l ProteinQure |
| [ | NEASQC | \—1 rE AstraZeneca | |" | [+l 1QBit |
— oy —| - Bayer | ‘ 4i = Cambridge Quantum Computing |
l — d - I_ —i - Biogen I I - Cloud Pharmaceuticals |
3 Consortla —| - Boehringer Ingelheim | — B Zapata Computing |
— = Bristol-Myers Squibb | | ChemAlive |
Accessible functional QC = N Lilly | [i= Hafnium Labs |
hardware providers with _ .
pharmaco collaboration —| e GSK | I B S Quantum Simulations |
| E Merck & Co, | I == Rahko |
= Amazon | —| . Merck Group | = SeeQC |
| . D-Wave | | [ | Novartis | ! = CreativeQuantum |
— | Google I —| ] Movo Nordisk |
- Y | = ofizer | ~38 Startups
=] Honeywell | — 3 Roche |
—| | Sanofi |
“0 Multinational —| ] Takeda |
~9 H/W providers 55 Disovery Tod
July, 2021

—\v



Value Creation through QC in the Pharmaceutical Industry

BMDRC

Key
Activity

Funding
Source

Maturity

WINDOW OF OPPORTUNITY FOR PHARMA
Not fully error-corrected QC

Incubation
o |23 (5% ——
: 2S00 22 3 S
Evolution of QC o m L @ = SRR >
~ o o 3 c S5 s S
40 years o o o =3 e e
- NG St P 3
1 e . .
= - = QM based MD (Drug Design)
Fundamental R&D Commercialization wherever Full value creation &
= Academic and 1st QC can bring early value commercial-ization of QC
commercial R&D activities = Commercial R&D and = Upscale and rollout to serve late
= Disruptive changes business development adopters
= Emergence of quantum = Disruptive and = Dominance of incremental
-inspired algorithms incremental changes changes
Only governments or Corporate R&D budgets, VC, & Value-based pricing
pioneers invest governments

Fully error-corrected QC

Modified M&C report by K1

'No



(Source: Quantum Technolog|es 2021, June 2021)
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Quantum Volume & Quantum Error (Noise) Correction in QC

BMDRC

Quantum Error: High Probability of Hardware Error in Quantum Computer
- Need Error Correction -> Stablilizer

Transistor in a Qubit in a
Classical Computer Quantum Computer

p~10727 p~10~7

~24 orders of magnitude difference
IBM Quantum / © 2021 IBM Corporation

Quantum volume: a metric that measures the capabilities and error rates
of a quantum computer. It expresses the maximum size of square
guantum circuits that can be implemented successfully by the computer.
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Quantum computational study of chloride ion attack on chloromethane for chemical accuracy and
guantum noise effects with UCCSD and k-UpCCGSD ansatzes
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SUMMARY

FMO is a very useful tool for calculating the electron density and energy of proteins.
Using FMOQO, it is possible to calculate the interaction energy between a protein and a
ligand, and furthermore, the interaction type can be analyzed with the energy-
decomposition tool (PIE).

Compared to QM calculation, NNP has a very short calculation time, but the energy
can be obtained even at the CCSD MO level depending on the training data set.

We developed AVENGERS for small molecular drug design and CARPET for protein
design based on the FMO method. Also, the usefulness of these two platforms was
verified through various experiments.

The introduction of qguantum computing in Computer-Aided Drug Discovery will allow

CADD to lead the entire process of drug discovery within 10 years.
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