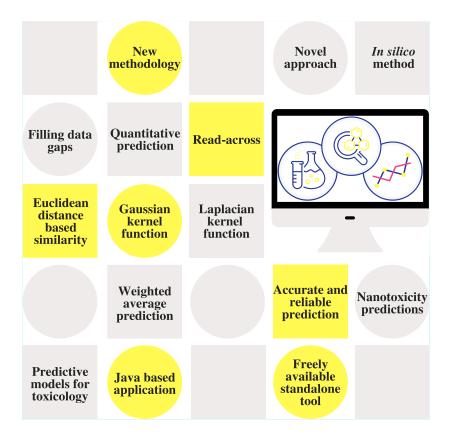
CHEMICAL READ-ACROSS PREDICTIONS OF ECOTOXICITY DATA



Kunal Roy

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

20-03-2022	26	5-0	5-	2	0	2	2
------------	----	-----	----	---	---	---	---

DTC

.AB

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

In silico methods of toxicity assessment

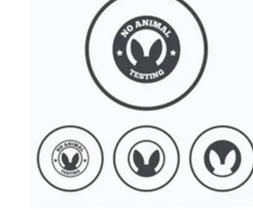
□The effect of hazardous chemicals and pollutants on the ecosystem is a matter of great concern.

□Since there is large number of chemicals currently in common use (approx. 100,000) and new chemicals are registered at a very high rate (1000 per year), it is obvious that our human and material resources are insufficient to obtain experimentally even basic information on environmental fate and effects for all these chemicals.

□Thus, it is necessary to develop quantitative models that will accurately and readily predict environmental behaviour of large sets of chemicals.

DTC

In silico methods of toxicity assessment



- Time and cost effective
- Avoids animal experimentation
- Supports "3R" Principles
- Can be applied for virtual compounds
- Supported by various organizations like
 - **European Centre for the Validation of Alternative Methods** (ECVAM)
 - International Organizations of Medical Sciences
 - **REACH (Registration, Evaluation and Authorization of**
 - Chemicals) regulations
 - US EPA
 - **Organization for Economic Cooperation and Development** (OECD)

Roy K, Expert Opin Drug Discov, 2007, 2, 1567-1577

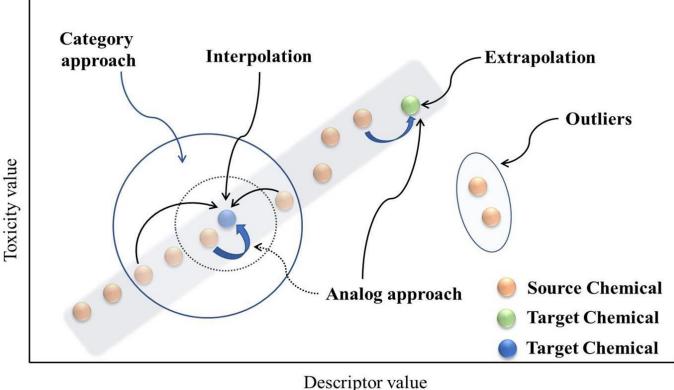
What is Read-across?

•Read across (RA) is a **prediction method** of unknown chemicals from the chemical analogues with known toxicity from the **same chemical category**.

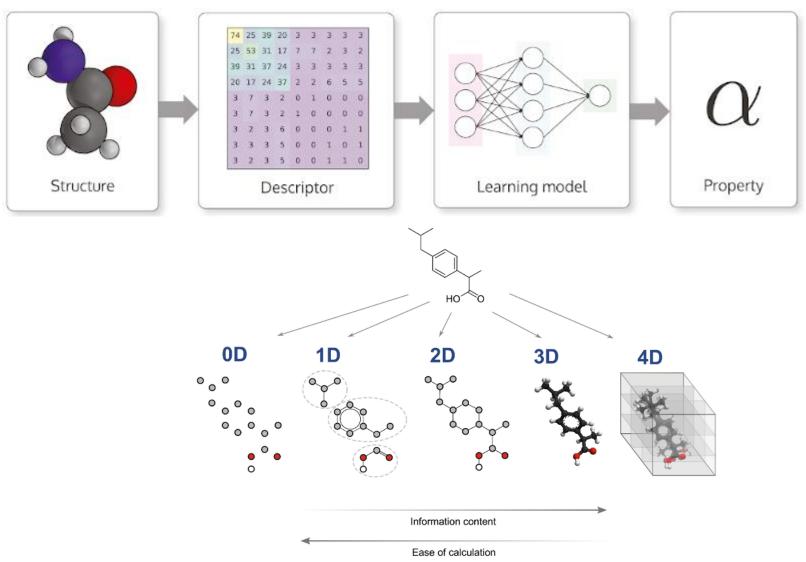
•It is accepted by **REACH** and **US EPA**.

- •Used for data gap filling.
- •Defined chemical category is necessary.
- Strategies: One → One; One → Many
 Many → One; Many → Many
- •Analog approach

•Category approach



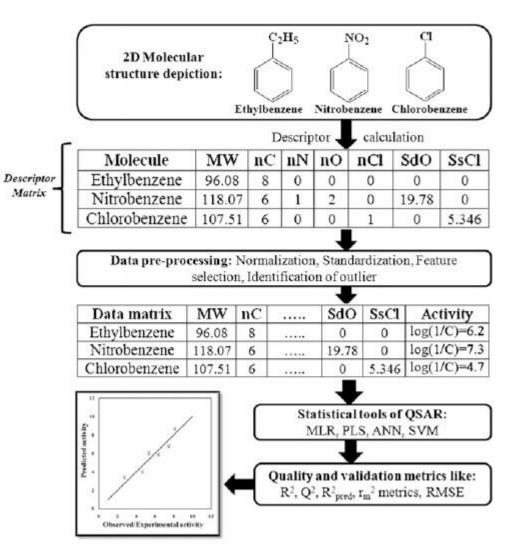
What is Similarity?



https://chemintelligence.com/blog/machine-learning-descriptors-molecules

DTC LAB

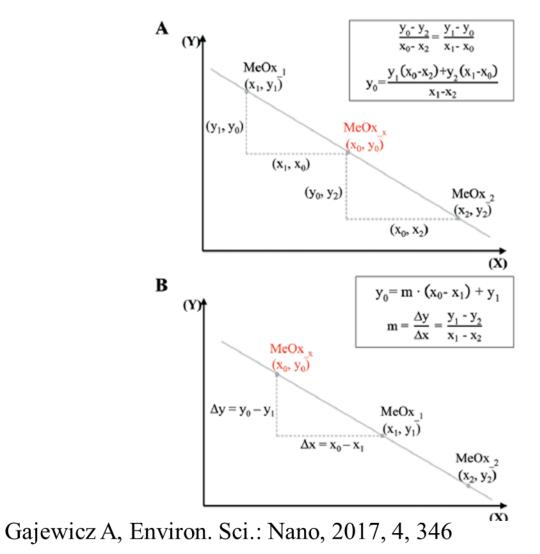
What is Similarity?



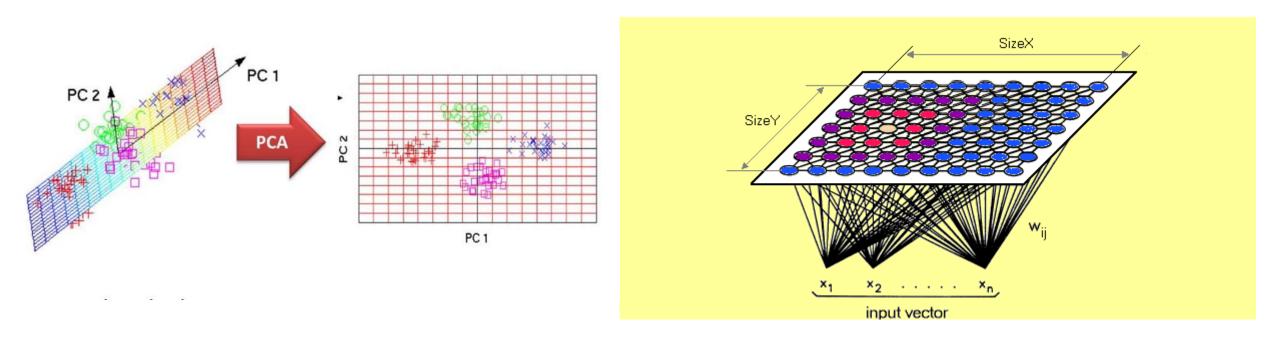
26-05-2022

Roy, Kar and Das, A Primer on QSAR/QSPR Modeling (SpringerBrief), Springer, 2015

What is Similarity?



What is Similarity?



https://towardsdatascience.com/feature-extraction-using-principal-component-analysis-a-simplified-visual-demo-e5592ced100a

https://towardsdatascience.com/self-organizing-maps-1b7d2a84e065

PCA

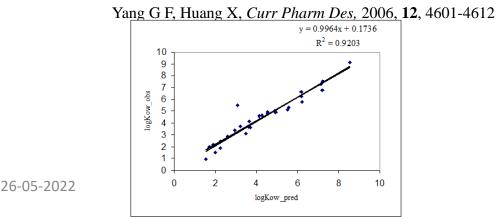
SOM

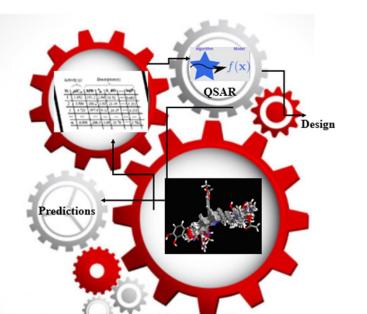
QSAR (Quantitative Structure-Activity Relationship)

QSAR deals with development of predictive models correlating <u>biological</u> <u>activity</u> (including therapeutic and toxic) of chemicals (drugs/toxicants/environmental pollutants) with <u>descriptors</u> representative of molecular structure and/or property by application of <u>statistical tools</u>.

B*A* = *f* (*chemical structure or property*) = *f* (*descriptors*)

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots$$





DTC

LAB

Metrics for judging quality of QSAR models

 $R^{2} = 1 - \frac{\sum (Y_{obs} - Y_{calc})^{2}}{\sum (Y_{obs} - \overline{Y})^{2}}$

 $R_a^2 = \frac{(n-1)R^2 - p - 1}{n - p - 1}$

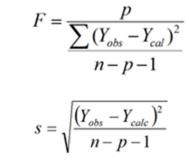
 $\sum (Y_{cal} - \overline{Y})^2$

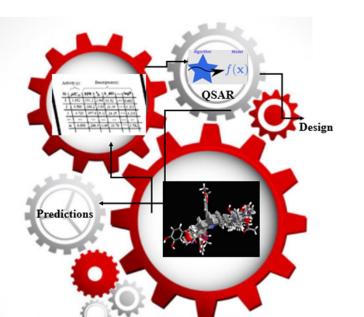
Determination coefficient

Explained variance

Variance ratio

□ Standard error of estimate

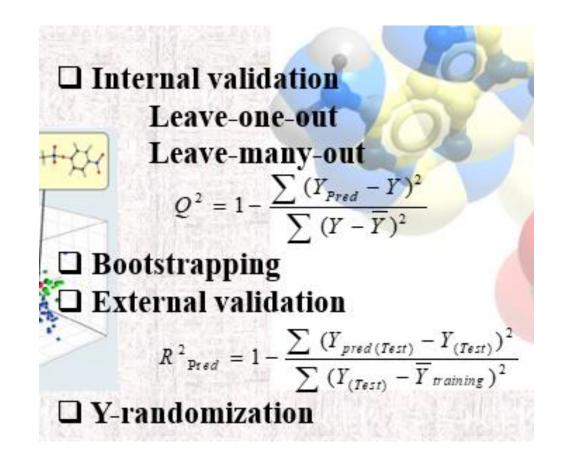


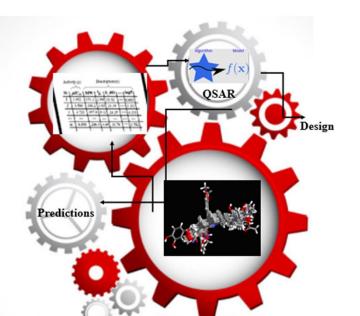


10

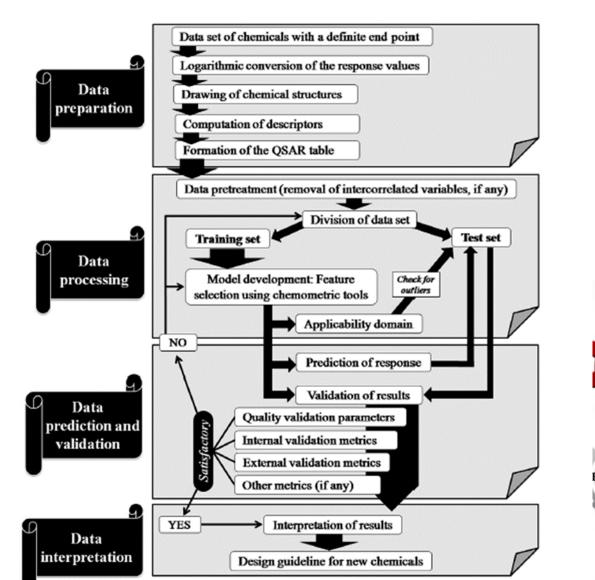
DTC LAB Validation of QSAR models

11





DTC LAB Steps in QSAR model development



26-05-2022

Why Read-across instead of QSAR?

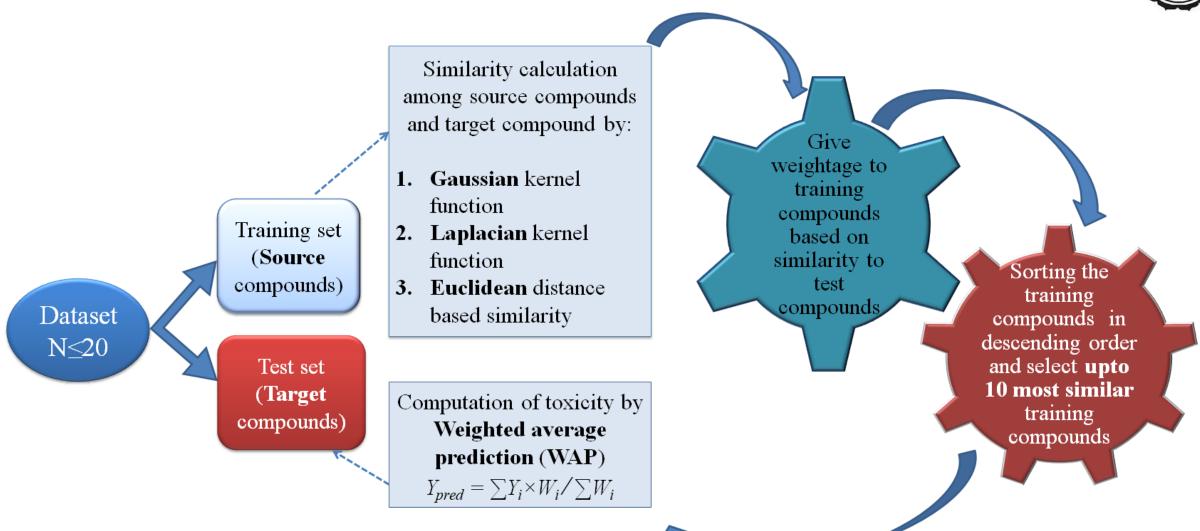
- > QSAR is not suitable for small datasets
- Read-across is not a statistical fitting process
- Calculation is comparatively easier than QSAR
- > Alternative tool for hazard assessment, aimed at filling data gaps
- ➢ For nano-toxicity, the data sets are usually small; thus, application of quantitative read-across is more suitable than statistical fitting approaches

Chemical read-across predictions of Nanotoxicity data

- To develop an easier and efficient method for quantitative read-across predictions
- Quantitative toxicity prediction of various small datasets (specifically, toxicity of metal oxide nano-particles) using a new method
- Comparison of the results with the previous methods
- Development of an application for Read-across predictions.

DTG taset	Endpoint	Descriptors	Data points
LAB Dataset 1 Environ. Sci.: Nano, 2017 , 4, 1389	pLC ₅₀ of metal NPs against a human ketatinocyte (HaCaT) cell line.	Mulliken Electro negativity of the cluster (χ^c) , and the enthalpy of formation of a metal oxide nano- cluster representing a fragment of the surface (ΔH^c_f) .	18
Dataset 2 <i>Environ. Sci.:</i> <i>Nano</i> , 2017 , <i>4</i> , 1389	pEC ₅₀ of metal NPs against bacteria <i>Escherichia coli</i> .	The enthalpy of formation of gaseous cations having the same oxidation state as those in the metal oxide structure (ΔH_{Me+}), and the charge of the metal cation corresponding to a given oxide (Me+).	17
Dataset 3 <i>Environ. Sci.:</i> <i>Nano</i> , 2017 , <i>4</i> , 1389 26-05-2022	pLC ₅₀ of metal NPs against bacteria <i>Escherichia coli</i> under dark condition.	Enthalpy of formation of gaseous cations having the same oxidation state as those in the metal oxide structure (ΔH_{Me+}), and the absolute electro negativity of the metal oxide (LZELEHHO).	16 15

Schematic representation of the proposed methodology



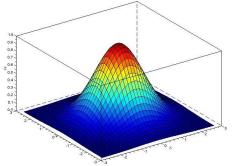
DTC

The function Gaussian kernel is a variant on the radial basis function kernel defined as:

$$f = \exp((-\|X-Y\|^2)/2\sigma^2)$$

Where X, Y are the input vectors and ||X-Y|| is the Euclidean distance between two vectors.

Say X and Y are two vectors each of length n $X = ||X_1, X_2, X_3, \dots, X_n||; Y = ||Y_1, Y_2, Y_3, \dots, Y_n||$



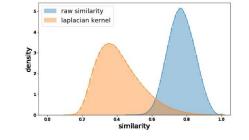
d (X, Y) =
$$||X - Y|| = sqrt((X_1 - Y_1)^2 + (X_2 - Y_2)^2 + \dots + (X_n - Y_n)^2)$$

σ is a variable number. We have predicted the toxicity using different values of σ (0.25, 0.5, 0.75, 1.0, 1.5, 2.0)

The function Laplacian kernel is a variant on the radial basis function kernel defined as: $\kappa(X, Y) = \exp((-Y ||X-Y||_1))$

Where X, Y are the input vectors and $||X-Y||_1$ is the Manhattan distance between two vectors.

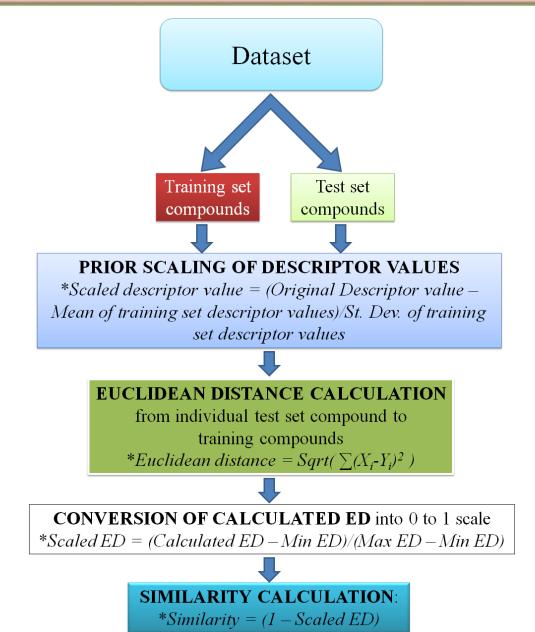
Say X and Y are two vectors each of length n $X = ||X_1, X_2, X_3, \dots, X_n|| Y = ||Y_1, Y_2, Y_3, \dots, Y_n||$



d1 (X, Y) = $||X - Y||_1 = (X_1 - Y_1) + (X_2 - Y_2) + (X_3 - Y_3) + \dots + (X_n - Y_n)$

 Υ is a variable number. We have predicted the toxicity using different values of Υ (0.25, 0.5, 0.75, 1.0, 1.5, 2.0)

Euclidean distance based similarity estimation



Validation metrics

	Quantitative validation metrics
Q ² _{F1}	$Q_{F1}^{2} = 1 - \frac{\sum(Y_{obs(test)} - Y_{pred(test)})^{2}}{\sum(Y_{obs(test)} - \overline{Y_{training}})^{2}}$
Q ² _{F2}	$Q_{F2}^{2} = 1 - \frac{\sum(Y_{obs(test)} - Y_{pred(test)})^{2}}{\sum(Y_{obs(test)} - \overline{Y_{test}})^{2}}$
Root mean square error of prediction (RMSE _p)	$RMSE_{p} = \sqrt{\frac{\sum(Y_{obs(test)} - Y_{pred(test)})^{2}}{n_{test}}}$

Quantitative terms- $Y_{obs(test)}$: Observed activity of test set compounds; $Y_{pred(test)}$: Predicted activity of test set compounds; $\overline{Y_{training}}$: Average observed activity of training set compounds; $\overline{Y_{test}}$: Average observed activity of test set compounds; $\overline{T_{test}}$: Average observed activity of test set compounds; $\overline{T_{test}}$: Average observed activity of test set compounds; $\overline{T_{test}}$: Average observed activity of test set.

DTC	Classification-based metrics	
LAB Sensitivity (%)	$Sensitivity = \frac{TP}{TP + FN}$	
Specificity (%)	$Specificity = \frac{TN}{TN + FP}$	
Precision (%)	$Precision = \frac{TP}{TP + FP}$	
Accuracy (%)	$Accuracy = \frac{TP + TN}{TP + FN + TN + FP}$	
F-measure (%) (harmonic mean of recall)	$F - measure(\%) = \frac{2}{\frac{1}{Precision} + \frac{1}{Sensitivity}}}$	
G-means (geometric mean)	$G-means = \sqrt{SpecificityXSensitivity}$	
Cohen's kappa (K)	$P_r(a) = \frac{(TP + TN)}{(TP + FP + TN + FN)}$ $P_r(e) = \frac{\{(TP + FP)X(TP + FN)\} + \{(TN + FP)X(TN + FN)\}}{(TP + FN + FP + TN)^2}$ $Cohen's K = \frac{P_r(a) - P_r(e)}{1 - P_r(e)}$	
Matthews correlation coefficient ² (MCC)	$MCC = \frac{(TPXTN) - (FPXFN)}{\sqrt{(TP + FP)X(TP + FN)X(TN + FP)X(TN + FN)}}$	

Classification-based ter **TP:** True positive; **TN:** True negative; FP: False positive; **FN**: False negative; $P_r(a)$: relative observed agreement predicted between the classification of the model and the known classification; $P_r(e)$:hypothetical probability ofchance agreement.

D Soc ware Development – A Java based application for quantitative read across

LAB Software: Quantitative Read Across for Nanotoxicity Prediction available <u>https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home</u>

•A java based application has been developed.

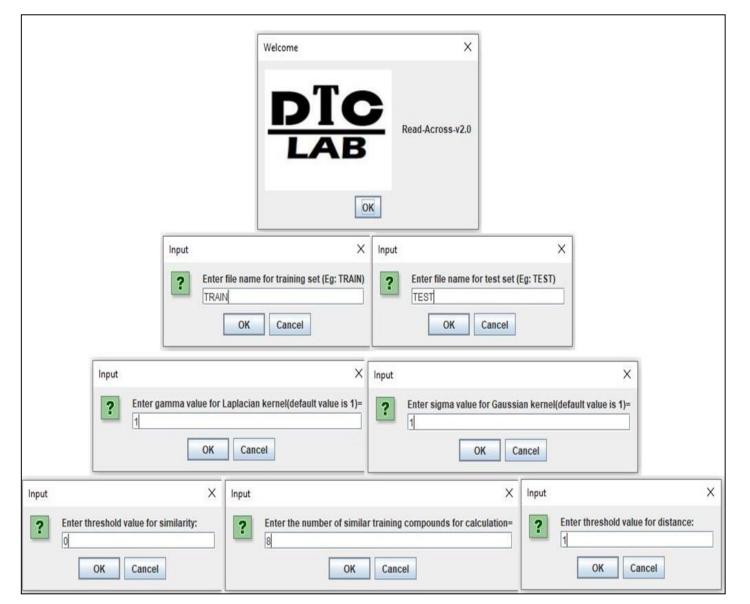
•It needs training set and test set data as input in ***.xlsx** format.

•User has to provide **σ value**, **Y value**, **number of similar training compounds**, **distance threshold**, and **similarity threshold** as input information.

•The program generates two output files namely Biological activity (predicted response), and sorted experimental response with respect to distance and similarity.

Input files			Trair	ı.xlsx				Test.xlsx						
		Α	В	С	D	E		А	В	С	D	E		
	1	Serial No.	∆Hfc [Kcal	χc [eV]	pLC50		1	Serial No.	ΔHfc [Kcal	χc [eV]	pLC50			
	2	2	-600	3.44	1.85		2	17	-52.1	6.78	2.92			
	3	4	-378.5	4.21	2.05		3	5	-618.3	3.81	2.12			
	4	14	-266.6	4.57	2.67		4	6	-135.3	3.35	2.21			
	5	13	-96.3	5	2.64		5	10	68	4.47	2.49			
	6	16	-157.7	6.45	2.87		6	8	-235.3	4.36	2.3			
	7	15	-786.8	7.44	2.83		7	11	-148.5	5.34	2.5			
	8	3	-638.1	4.95	2.02		8	12	-715.4	6.73	2.56			
	9	18	-449.4	8.33	3.32		9	7	-139.5	3.24	2.24			
	10	1	-1492	4.91	1.76		10	9	-206.7	4.46	2.31			
	11						11							

DTC LAB



Snapshot of the developed program "Read-Across-v2.0".

Program Output

1	А	В	C	D	E	F	G	Н	1	J	K	L	1
1													
2		Euc(17)	0	0.243333	0.313656	0.351599	0.446018	0.446573	0.450183	0.652891	1		
3		Y	2.87	2.64	3.32	2.67	2.83	2.05	2.02	1.85	1.76		
4		G.K.(17)	0.910808	0.327193	0.197234	0.144334	0.058905	0.058567	0.056401	0.004564	9.98E-06		
5		Y	2.87	2.64	3.32	2.67	2.83	2.05	2.02	1.85	1.76		
6		L.K.(17)	0.633502	0.295032	0.150654	0.14795	0.116471	0.092277	0.079468	0.033733	0.010302		
7		Y	2.87	2.64	2.67	3.32	2.83	2.05	2.02	1.85	1.76		
8		Euc(5)	0	0.146096	0.18291	0.274926	0.459077	0.664515	0.738991	0.790012	1		
9		Y	1.85	2.05	2.02	2.67	2.64	2.87	1.76	2.83	3.32		
10		G.K.(5)	0.95169	0.710785	0.633676	0.442229	0.157608	0.03052	0.014812	0.008679	0.000687		
11		Y	1.85	2.05	2.02	2.67	2.64	2.87	1.76	2.83	3.32		
12		L.K.(5)	0.759368	0.466885	0.441522	0.270436	0.138094	0.068939	0.064313	0.06364	0.039416		
13		Y	1.85	2.02	2.05	2.67	2.64	2.83	2.87	1.76	3.32		
14		Euc(6)	0	0.014604	0.097765	0.12149	0.299164	0.451091	0.859341	0.944557	1		
15		Y	2.05	2.67	2.64	1.85	2.02	2.87	2.83	3.32	1.76		
16		G.K.(6)	0.575719	0.545612	0.383202	0.34136	0.116506	0.034678	0.000351	0.000105	4.6E-05		
17		Y	2.05	2.67	2.64	1.85	2.02	2.87	2.83	3.32	1.76		
18		L.K.(6)	0.341183	0.328235	0.324049	0.31518	0.135754	0.111743	0.020959	0.0165	0.015231		
19		Y	2.67	2.05	2.64	1.85	2.87	2.02	3.32	2.83	1.76		
20		Euc(10)	0	0.088553	0.174711	0.263751	0.371802	0.37496	0.690806	0.702028	1		
21		Y	2.64	2.67	2.05	2.87	2.02	1.85	3.32	2.83	1.76		
22		G.K.(10)	0.792794	0.571628	0.363022	0.197258	0.07765	0.075324	0.001449	0.001218	5.3E-06		
23		Y	2.64	2.67	2.05	2.87	2.02	1.85	3.32	2.83	1.76		
24		L.K.(10)	0.486446	0.425951	0.29576	0.169482	0.139506	0.10812	0.026166	0.020599	0.019016		
25		Y	2.64	2.67	2.05	2.87	2.02	1.85	3.32	2.83	1.76		

Sort.xlsx

	А	В	С	D	Е	F	G	н	1	J	К	L	М	Ν
1														
2		ID	Yeuc(Test	Ygk(Test)	Ylk(Test)	Sigma valu	No.of simi	Gamma v	Compoun	Compoun	Compoun	Dist.thres	Sim.thresh	old
3		17	2.616411	2.802684	2.732053	0.75	8	1	9	9	9	1	0	
4		5	2.241289	2.112821	2.125365				9	9	9			
5		6	2.352527	2.311045	2.355685				9	9	9			
6		10	2.470007	2.515935	2.476761				9	9	9			
7		8	2.406442	2.36825	2.416297				9	9	9			
8		11	2.506966	2.532618	2.5518				9	9	9			
9		12	2.684332	2.720766	2.633566				9	9	9			
10		7	2.343017	2.296827	2.354544				9	9	9			
11		9	2.423507	2.394448	2.443175				9	9	9			
12														
13		Q2f1=	0.634219	0.863029	0.775445									
14		Q2f2=	0.62306	0.85885	0.768595									
15		RMSEP=	0.140603	0.08604	0.110166									
16														
17		Compoun	<2	signifies	only	one or zer	compound	in the	Threshold	value				
18														

Biological Activity.xlsx

Results and Discussion

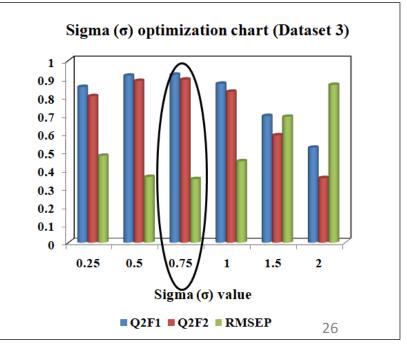
Toxicity prediction by Euclidean distance-based similarity estimation

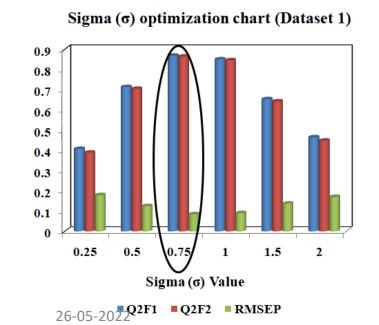
Dataset	No. of compounds in training set	Q ² _{F1}	Q ² _{F2}	RMSE _p
Dataset 1	9	0.63	0.62	0.14
Dataset 2	8	0.45	0.45	0.42
Dataset 3	8	0.77	0.69	0.60

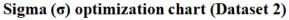
Toxicity prediction by Gaussian kernel function similarity estimation

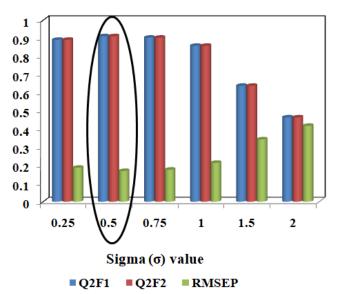
Sigma	(σ)	optimisation
-------	-----	--------------

GAUSSIAN KERNEL	[Dataset 1			Dataset 2			[t 3	
Sigma value	Q2F1	Q2F2	RMSEP		Q2F1	Q2F2	RMSEP	Q2F1	Q2F2	RMSEP
σ = 0.25	0.41	0.39	0.18		0.89	0.89	0.19	0.85	0.80	0.48
σ = 0.50	0.71	0.70	0.12		0.91	0.91	0.17	0.92	0.89	0.36
σ = 0.75	0.87	0.86	0.08		0.90	0.90	0.18	0.92	0.90	0.35
σ = 1.00	0.85	0.85	0.09		0.86	0.86	0.21	0.87	0.83	0.45
σ = 1.50	0.65	0.64	0.14		0.64	0.64	0.34	0.70	0.59	0.69
σ = 2.00	0.46	0.45	0.17		0.46	0.46	0.42	0.52	0.35	0.87









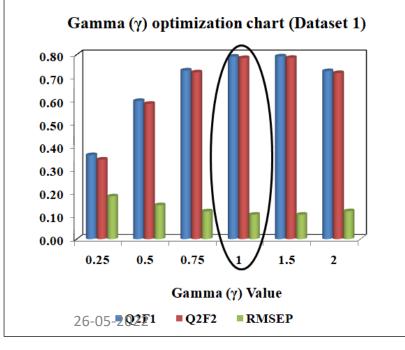
DTC LAB

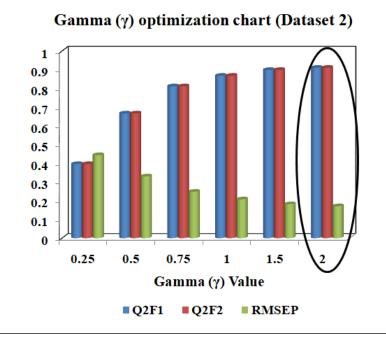
DTC LAB

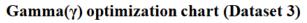
Toxicity prediction by Laplacian kernel similarity estimation

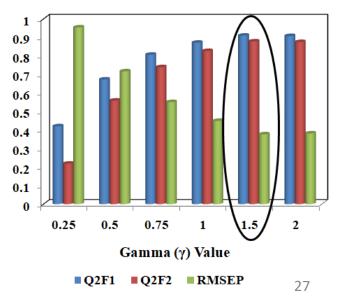
Gamma (y) optimisation

LAPLACIAN KERNEL	Dataset 1			Dataset 2			[t 3	
Gamma value	Q2F1	Q2F2	RMSEP	Q2F1	Q2F2	RMSEP	Q2F1	Q2F2	RMSEP
γ = 0.25	0.36	0.34	0.19	0.40	0.40	0.44	0.42	0.22	0.95
γ = 0.50	0.60	0.59	0.15	0.67	0.67	0.33	0.67	0.56	0.72
γ = 0.75	0.73	0.72	0.12	0.81	0.81	0.25	0.81	0.74	0.55
γ = 1.00	0.79	0.79	0.11	0.87	0.87	0.21	0.87	0.83	0.45
γ = 1.50	0.79	0.79	0.11	0.90	0.90	0.18	0.91	0.88	0.38
γ = 2.00	0.73	0.72	0.12	0.91	0.91	0.17	0.91	0.87	0.38



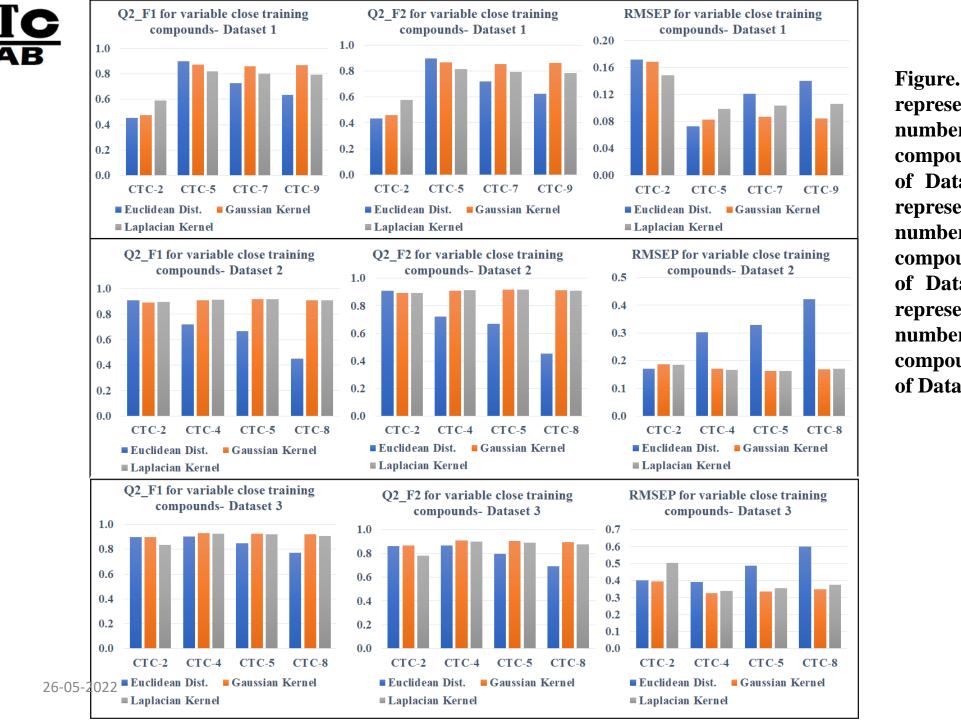






DTC LAB fects of number of close training compounds on the toxicity prediction in new algorithm

DS1		Q2F1				Q2F2				RMSEP	
No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK
2	0.45	0.48	0.59	2	0.44	0.46	0.58	2	0.17	0.17	0.15
5	0.90	0.87	0.82	5	0.90	0.87	0.81	5	0.07	0.08	0.10
7	0.73	0.86	0.80	7	0.72	0.85	0.80	7	0.12	0.09	0.10
9	0.63	0.87	0.79	9	0.62	0.86	0.79	9	0.14	0.08	0.11
DS2		Q2F1				Q2F2				RMSEP	
No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK
2	0.91	0.89	0.90	2	0.91	0.89	0.90	2	0.17	0.19	0.18
4	0.72	0.91	0.91	4	0.72	0.91	0.91	4	0.30	0.17	0.17
5	0.67	0.92	0.92	5	0.67	0.92	0.92	5	0.33	0.16	0.16
8	0.45	0.91	0.91	8	0.45	0.91	0.91	8	0.42	0.17	0.17
DS3		Q2F1				Q2F2				RMSEP	
No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK	No. of C.T.C	EUC	GK	LK
2	0.90	0.90	0.84	2	0.86	0.87	0.78	2	0.40	0.40	0.50
4	0.90	0.93	0.93	4	0.87	0.91	0.90	4	0.39	0.33	0.34
5	0.85	0.93	0.92	5	0.80	0.90	0.89	5	0.49	0.34	0.36
8	0.77	0.92	0.91	8	0.69	0.90	0.88	8	0.60	0.35	0.38



effect of training

representing the number training of close compounds on the metric values of Dataset 1; b) Bar diagram representing effect the of number of close training compounds on the metric values of Dataset 2; c) Bar diagram effect representing of the number of close training compounds on the metric values of Dataset 3.

Bar

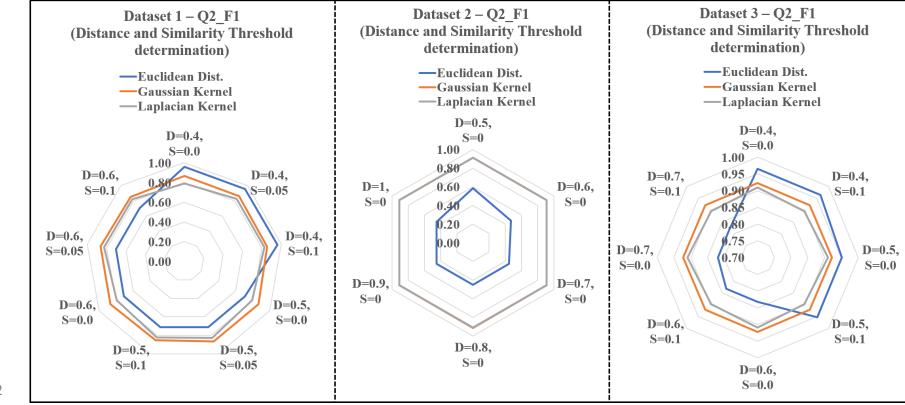
a)

Distance and similarity threshold optimization for the new similarity based read-across algorithm

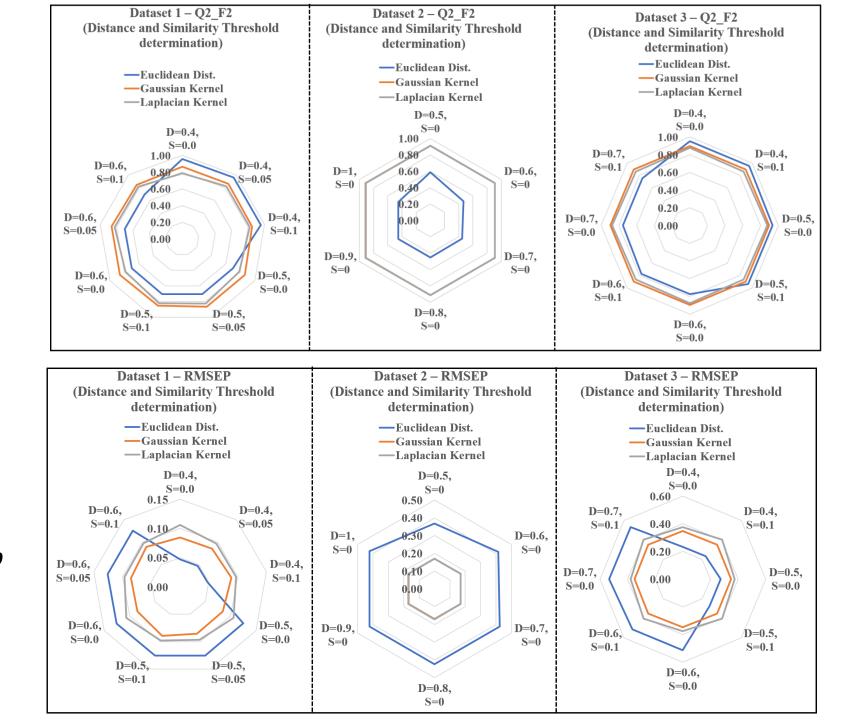
Dataset 1		Q2F1			Q2F2			RMSEP	
Threshold	EUC	GK	LK	EUC	GK	LK	EUC	GK	LK
D=0.4, S=0.0	0.96	0.87	0.79	0.96	0.86	0.79	0.05	0.08	0.11
D=0.4, S=0.05	0.96	0.87	0.83	0.96	0.86	0.82	0.05	0.09	0.10
D=0.4, S=0.1	0.96	0.85	0.82	0.96	0.85	0.82	0.05	0.09	0.10
D=0.5, S=0.0	0.71	0.87	0.79	0.70	0.86	0.79	0.13	0.08	0.11
D=0.5, S=0.05	0.71	0.87	0.83	0.70	0.86	0.82	0.13	0.09	0.10
D=0.5, S=0.1	0.71	0.85	0.82	0.70	0.85	0.82	0.13	0.09	0.10
D=0.6, S=0.0	0.71	0.87	0.79	0.70	0.86	0.79	0.13	0.08	0.11
D=0.6, S=0.05	0.71	0.87	0.83	0.70	0.86	0.82	0.13	0.09	0.10
D=0.6, S=0.1	0.71	0.85	0.82	0.70	0.85	0.82	0.13	0.09	0.10

Dataset 2		Q2F1			Q2F2			RMSEP	
Threshold	EUC	GK	LK	EUC	GK	LK	EUC	GK	LK
D=0.5, S=0	0.59	0.91	0.91	0.59	0.91	0.91	0.37	0.17	0.17
D=0.6, S=0	0.47	0.91	0.91	0.47	0.91	0.91	0.42	0.17	0.17
D=0.7, S=0	0.45	0.91	0.91	0.45	0.91	0.91	0.43	0.17	0.17
D=0.8, S=0	0.45	0.91	0.91	0.45	0.91	0.91	0.42	0.17	0.17
D=0.9, S=0	0.45	0.91	0.91	0.45	0.91	0.91	0.42	0.17	0.17
D=1, S=0	0.45	0.91	0.91	0.45	0.91	0.91	0.42	0.17	0.17

DTC									a faye
Dataset 3		Q2F1			Q2F2			RMSEP	
LhA B	EUC	GK	LK	EUC	GK	LK	EUC	GK	LK
D=0.4, S=0.0	0.96	0.92	0.91	0.95	0.90	0.88	0.23	0.35	0.38
D=0.4, S=0.1	0.96	0.92	0.90	0.95	0.89	0.86	0.23	0.35	0.40
D=0.5, S=0.0	0.95	0.92	0.91	0.93	0.90	0.88	0.28	0.35	0.38
D=0.5, S=0.1	0.95	0.92	0.90	0.93	0.89	0.86	0.28	0.35	0.40
D=0.6, S=0.0	0.83	0.92	0.91	0.77	0.90	0.88	0.51	0.35	0.38
D=0.6, S=0.1	0.83	0.92	0.90	0.77	0.89	0.86	0.51	0.35	0.40
D=0.7, S=0.0	0.82	0.92	0.91	0.76	0.90	0.88	0.53	0.35	0.38
D=0.7, S=0.1	0.82	0.92	0.90	0.76	0.89	0.86	0.53	0.35	0.40



 Q_{F1}^{2}



*RMSE*_p

Evaluation of similarity-based read-across algorithm by classification-based metrics

Classification based	Dataset 1	Dataset 2	Dataset 3
metrics	Euc (D=0.4)	GK and LK (S=0.0)	Euc (D=0.4)
TP	3	5	1
FN	0	0	0
FP	1	0	0
TN	5	4	7
Sensitivity (%)	75	100	100
Specificity (%)	100	100	100
Accuracy (%)	84.62	100	100
Precision (%)	100	100	100
F-measure (%)	85.71	100	100
G-means	0.87	1	1
Kohen's ĸ	0.68	1	1
MCC	0.79	1	1

TP: true positive, FN: false negative, **FP**: false positive, **TN**: true negative, **Euc**: Euclidean distance based read-across, **GK**: Gaussian kernel read-across, **LK**: Laplacian kernel read-across, **D**: distance threshold, **S**: similarity threshold, **MCC**: Matthews correlation coefficient.

DTC LAB

Comparison of performance of new similarity-based algorithm with previously published *in silico* models

	Tes	t Set (Target compoun	ds)
Ref.	Q^{2}_{F2}	RMSE _P	n*
Dataset 1			
$Euc^{a}(D=0.4)$	0.96	0.05	9
GK ^b (S=0.05)	0.86	0.09	9
LK ^c (S=0.05)	0.82	0.10	9
QRA _{PC} ¹	0.74	0.20	11
Nano-QSAR ²	0.83	0.13	8
Dataset 2			
Euc^{a} (D=0.5)	0.59	0.37	9
GK ^b (S=0.0)	0.91	0.17	9
LK ^c (S=0.0)	0.91	0.17	9
QRA _{PC} ¹	0.80	0.19	10
Nano-QSAR ³	0.83	0.19	7
Dataset 3			
Euc ^a (D=0.4)	0.95	0.23	8
GK ^b (S=0.0)	0.90	0.35	8
LK ^c (S=0.0)	0.88	0.38	8
QRA _{PC} ¹	0.91	0.33	7
Nano-QSAR ⁴	-0.20	0.53	4

 Euc^a : Euclidean distance-based similarity; GK^b : Gaussian kernel function similarity; LK^c : Laplacian kernel function similarity; D: distance threshold; S: similarity threshold; n^* : no. of compounds in test set; The most efficient algorithms/models for the prediction of toxicity are indicated in bold

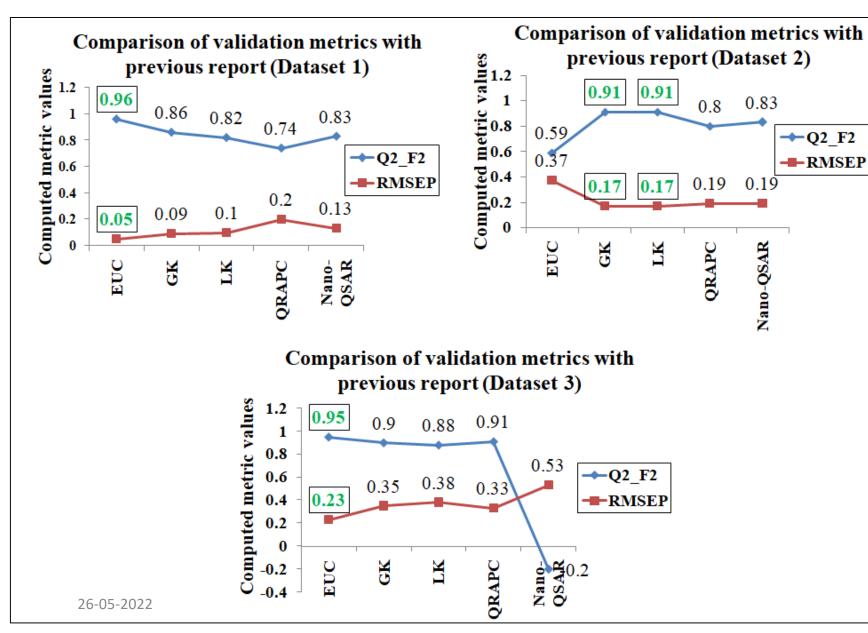
1. A. Gajewicz, *Environ. Sci. Nano*, 2017, **4**, 1389–1403.

2. A. Gajewicz, N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn and J. Leszczynski, Nanotoxicology, 2015, 9, 313–325.

3. T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H.-M. Hwang, A. Toropov, D. Leszczynska and J. Leszczynski, Nat. Nanotechnol., 2011, 6, 175–178

4. K. Pathakoti, M. J. Huang, J. D. Watts, X. He and H. M. Hwang, J. Photochem. Photobiol. B Biol., 2014, 130, 234–240.

Comparison of performance of new similarity-based algorithm with previously published *in silico* models



DTC

Figure:

Graphical representation of external validation metrics $(Q^{2}_{F2},$ RMSE_P) obtained the similarity from new methods based and published previously (QRA_{PC} methods and Nano-QSAR)

Summary of Nano-read-across studies

- A new quantitative read-across algorithm based on various similarity estimation techniques w introduced.
- Euclidean distance, Gaussian kernel function, and Laplacian kernel function used for similarity estimation.
- ✤ Optimization of sigma and gamma values of Gaussian and Laplacian kernel function, respectively.
- * Assessment of effect of number of close training compounds to the prediction quality was performed \rightarrow 2-5 close training compounds can efficiently predict the toxicity of query compounds.
- ✤ A distance threshold for the Euclidean distance similarity estimation and a similarity threshold for the Gaussian and Laplacian kernel function similarity estimations— better results. Suitable distance threshold = 0.4 to 0.5; suitable similarity threshold = 0.00 to 0.05.
- ✤ A simple java based computer program has also been developed (available at: <u>https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home</u>).
- The new similarity-based read-across algorithm and the designed software are easy to use, efficient, and an expert independent alternative method for the toxicity prediction of MeOx nanoparticles.

WORKFLOW Read across prediction of soil ecotoxicity against *Folsomia candida*

Sub-Training Set (26 compounds) 75 % (8 compounds)			tion (34 comp 75 npounds) 25 %	ounds)		-	pounds) 5 % Training and test sets are split based on Euclidean Distance Method			Endpoint: pEC50 against Folsomia candida	
σ	γ	**		σ	γ	**		σ	γ	**	
0.25	0.25	8	1. The training set is split based on Euclidean distance method ,	0.25	0.25	8	3. After optimization, this setting is applied on the full training set and test set for predictions.	0.25	0.25	5	
0.50	0.50	7	into Sub-training set and Calibration set	0.50	0.50	7		0.50	0.50	4	
0.75	0.75	6		0.75	0.75	6		0.75	0.75	3	
1.00	1.00	5	OPTIMIZATION	1.00	1.00	5	Final Setting for Prediction	1.00	1.00	2	
1.25	1.25	4		1.25	1.25	4		1.25	1.25		
1.50	1.50	3	2. Sub-training set and	1.50	1.50	3	4 The ne of circiles training	1.50	1.50		
1.75	1.75	2	Calibration set are used to optimize the hyperparameters	1.75	1.75	2	4. The no. of similar training compound was then tweaked to	1.75	1.75		
2.0	2.0		of the similarity functions. The function with best validation statistics was noted.	2.0	2.0		get better predictions and validation metrics. Best one was deemed as final setting.	2.0	2.0		

- Values selected

Pal et al, unpublished work

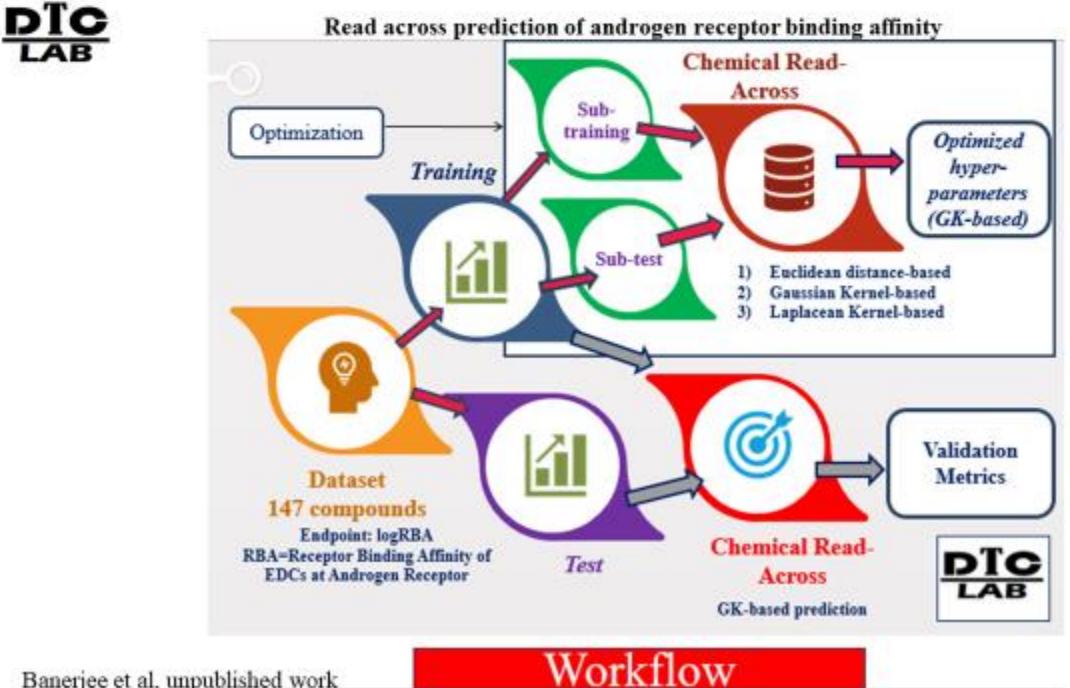
****** - Number of similar training compounds

PTC Results

• At the final setting

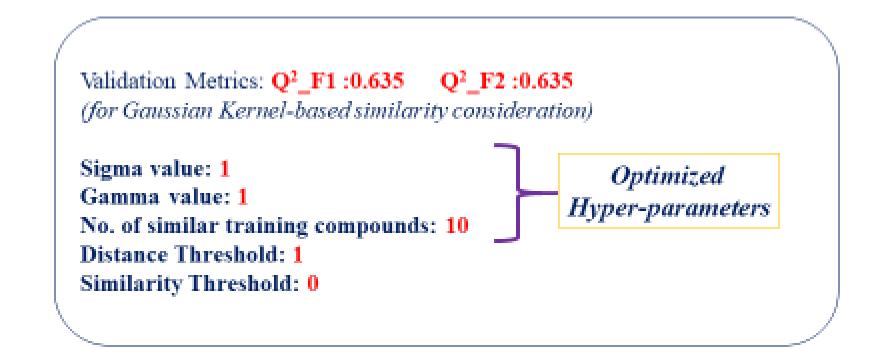
		Yeuc(Test)	Ygk(Test)	Ylk(Test)	
σ = 2.00 γ = 1.25	Q ² _{F1}	0.7613	0.7747	0.7393	
No. of similar	Q ² _{F2}	0.7007	0.7174	0.6731	
Training	RMSE _P	0.7668	0.7449	0.8012	
Compounds = 3					

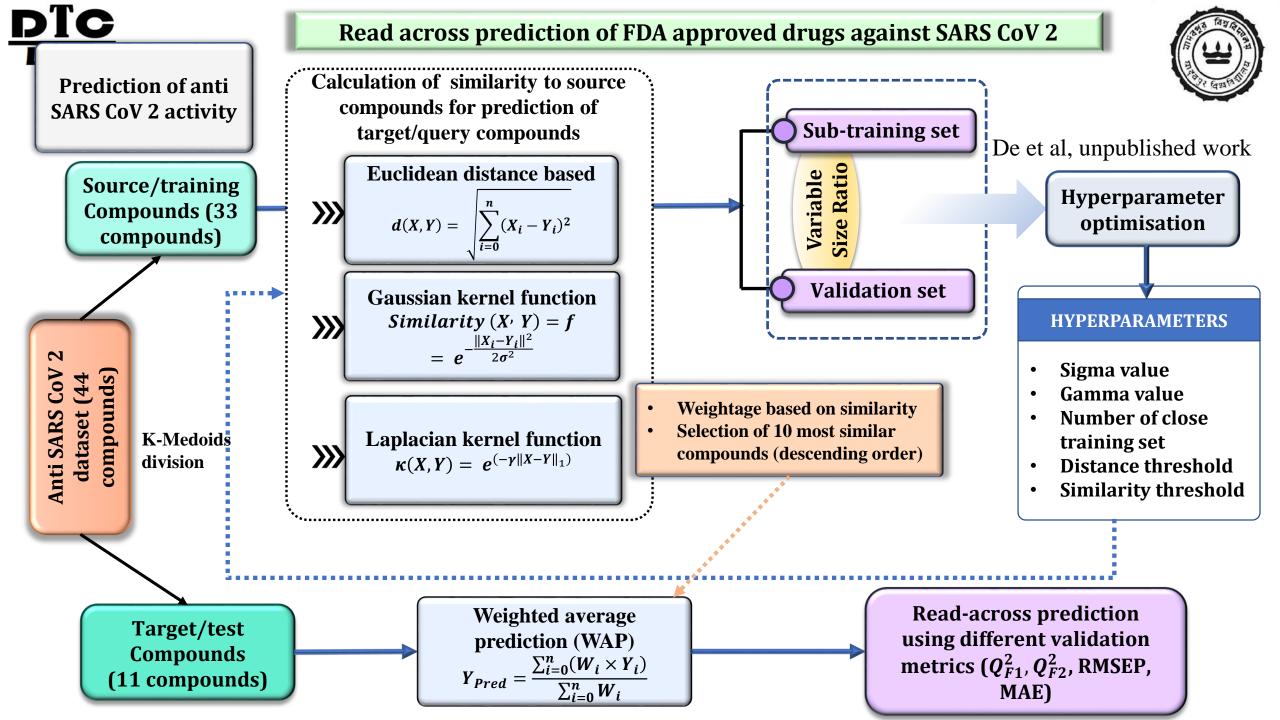
Gaussian kernel based function was found to be best here



Banerjee et al, unpublished work

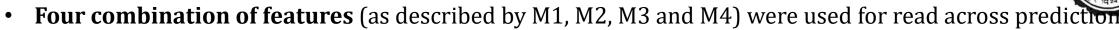
Results for Chemical Read-Across





The antiviral dataset consists of 44 compounds

• Training set is composed of 33 compounds, test set is composed of 11 compounds



MODEL FEATURES

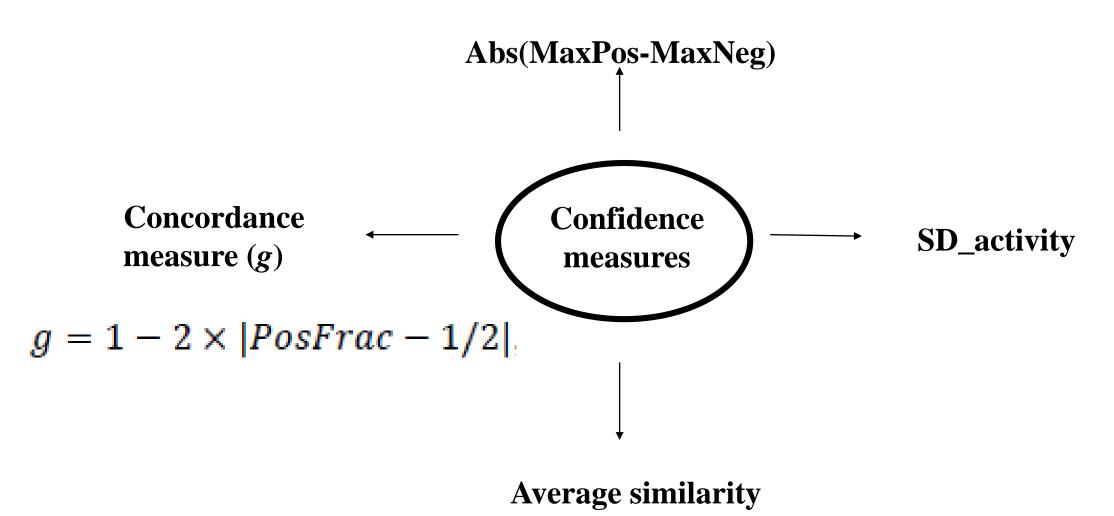
Combination No.	FEATURES
M1	nROR, F06[C-Cl], NsNH2, VE1sign_Dz(p)
M2	nROR, F06[C-Cl], NsNH2, nRCOOR
М3	nROR, F06[C-Cl], NsNH2, VE1_B(e)
M4	nROR, F06[C-Cl], NsNH2, VE1_H2

Combination No.	Sigma value	Gamma value	training		Similarity threshold
M1	1.5	1.5	10	0.5	0
M2	1	1	10	0.6	0
МЗ	0.75	1.5	10	0.5	0
M4	0.75	1.75	10	0.6	0

• READ ACROSS PREDICTION RESULTS

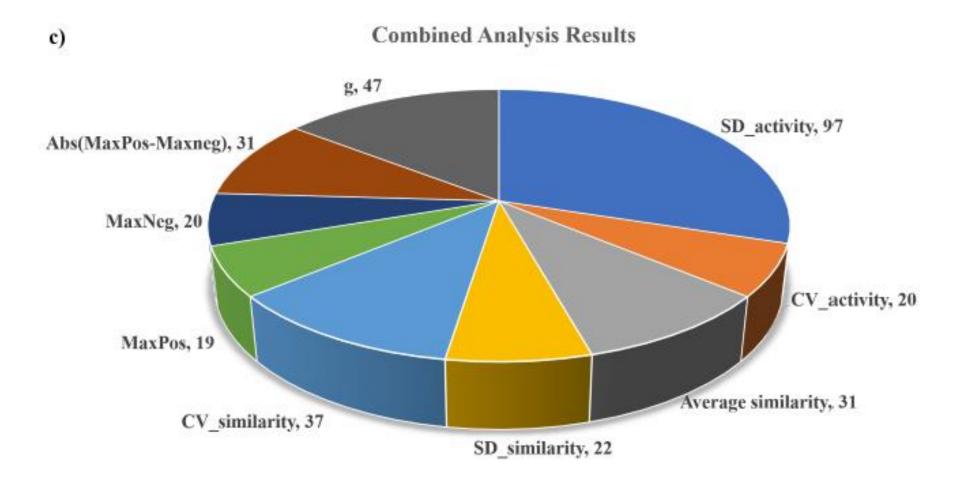
XX 11 1	M1			M2			M3			M4		
Validation metrics	Pred Y _{euc}	Pred Y _{gk}	Pred Y _{lk}	Pred Y _{euc}	Pred Y _{gk}	Pred Y _{lk}	Pred Y _{euc}	Pred Y _{gk}	Pred Y _{lk}	Pred Y _{euc}	Pred Y _{gk}	Pred Y _{lk}
Q_{F1}^2	0.879	0.893	0.909	0.870	0.912	0.911	0.862	0.912	0.892	0.722	0.931	0.932
Q_{F2}^2	0.878	0.893	0.909	0.870	0.912	0.911	0.862	0.912	0.892	0.722	0.931	0.932
RMSEP	0.152	0.143	0.132	0.157	0.129	0.131	0.162	0.130	0.144	0.230	0.115	0.114
MAE	0.127	0.121	0.118	0.135	0.124	0.119	0.142	0.114	0.132	0.163	0.100	0.104

Reliability of Quantitative Read-Across Predictions

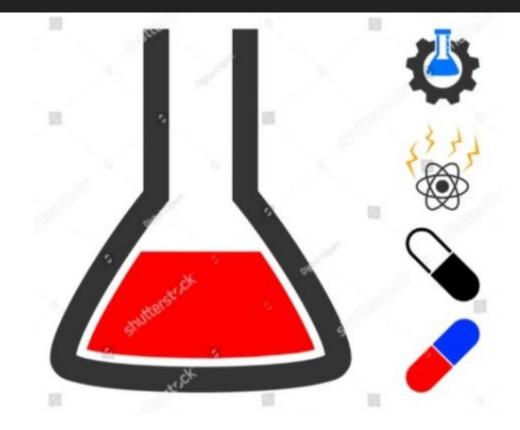


95% confidence interval of read – across predictions = weighted average + $t_{95\%} \times \frac{s_{weighted}}{\sqrt{n}}$

Reliability of Quantitative Read-Across Predictions



Banerjee A, Chatterjee M, De P, Roy K, 2022 (Submitted)



UNIVERSITY OF GDANSK

Quantitative Read Across for Nanotoxicity predictions

Chatterjee M, Banerjee A, De P, Gajewicz A, Roy K Environ Sci: Nano 2021 DOI: 10.1039/D1EN00725D Presented in OpenTox Virtual meeting (20 Sept 2021) Software developed by Arkaprava Banerjee (arka.banerjee16@gmail.com)

1

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home

Environmental Science Nano

PAPER

View Article Online View Journal

Cite this: DOI: 10.1039/d1en00725d

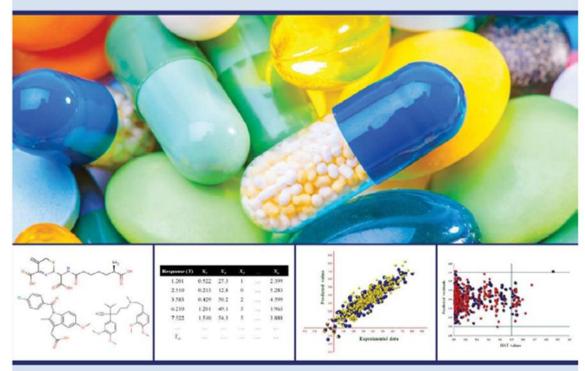
A novel quantitative read-across tool designed purposefully to fill the existing gaps in nanosafety data[†]

Mainak Chatterjee,^a Arkaprava Banerjee,^a Priyanka De,^a Agnieszka Gajewicz-Skretna ^{Db} and Kunal Roy ^{D*a}

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home

Acknowledgements

Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment



Kunal Roy, Supratik Kar Rudra Narayan Das

SPRINGER BRIEFS IN MOLECULAR SCIENCE

Kunal Roy Supratik Kar

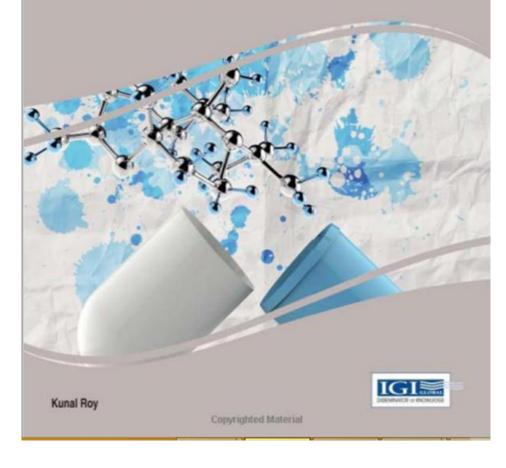
Rudra Narayan Das

A Primer on QSAR/QSPR Modeling Fundamental Concepts

Deringer

Premier Reference Source

Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment



DTC LAB

Challenges and Advances in Computational Chemistry and Physics 24 Series Editor: Jerzy Leszczynski

Kunal Roy Editor

Advances in QSAR Modeling

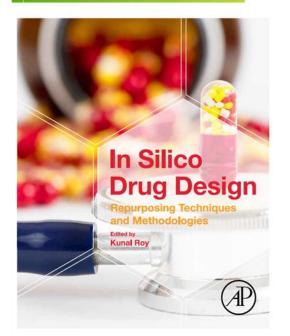
Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Sciences

DTC LAB

Kunal Roy Editor

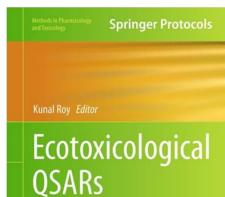
Computational Modeling of **Drugs Against** Alzheimer's Disease

💥 Humana Press



Springer Protocols

Multi-Target Drug Design Using Chem-Bioinformatic Approaches



In Silico Modeling of Drugs Against Coronaviruses

Computational Tools and Protocols

💥 Humana Press

CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY

KUNAL ROY

WILEY

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

26-05-2022

54

Thank you!