

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

A Flash Presentation

Multi-target approach on *Leishmania donovani* and finding out potent inhibitors for essential enzymes

Debanjan Saha and Anupam Nath Jha

Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India

Email: dsaha@tezu.ernet.in

Introduction

- **Visceral Leishmaniasis** (VL) also known as kala-azar is the most severe form caused by the sp. *Leishmania donovani* [1] having symptoms like irregular bouts of fever, weight loss, enlargement of the spleen and liver and anemia [2].
- VL has impacted Asian countries like Nepal, Bangladesh and some states of India such as Bihar, West Bengal and Uttar Pradesh.
- Adenine Phosphoribosyl-transferase(APRT) having PDB ID-1QB7 and dihydroorotate dehydrogenase(DHODH) having PDB ID-3C61 were selected as drug target from purine and pyrimidine pathways of *L. donovani* respectively [3].
- Different established inhibitors on the selected proteins of closely related species like *L. major* and *L. tarentolae* were collected.

Scheme . Integrative methodology used for the multi-target approach on *Leishmania donovani* enzymes

3

PASS analysis

The inhibitors that have shown antileishmanial activity with predicted Pa value were obtained from **PASS online** server

Table 1: PASS analysis for inhibitors

	Sl.No.	Inhibitors	PubChem CID	Pa value	Pi value	
	1	Sophoraflavanone G	72936	0.231	0.161	
	2	Mammea BBA	5489487	0.248	0.152	
	3	Mammea AAA	5281419	0.253	0.139	
	4	Grandifotane	102171884	0.332	0.081	
	5	Kaurenoic acid	73062	0.348	0.072	
	6	Isoskimmianine	621199	0.439	0.035	
	7	Centratherin	44409502	0.483	0.027	
	8	Myricetin	5281672	0.521	0.022	
	9	4-nitrophenylisocyanate	66012	0.529	0.008	
	10	Elephantopin	442206	0.555	0.018	
	11	Vernolide-D	101412352	0.634	0.012	
12		4-acetoxy-2-geranyl-5-hydroxy-3-n-pintyl phenol	44139611	0.690	0.009	
	13	Crotaorixin	11428177	0.775	0.006	
	14	Neurolenin-B	49799795	0.812	0.004	4

Docking result

Table 2: Docking result of APRT and DHODH proteins with five ligands by using three different docking software

Ligand No.	AutoDock 4.2.6 score (kcal/mol)		AutoDock Vina score (kcal/mol)		CB-Dock score (kcal/mol)	
	APRT	DHODH	APRT	DHODH	APRT	DHODH
1	-8.25	-6.93	-8.6	-10.0	-8.6	-9.2
2	-9.66	-8.24	-7.4	-5.9	-8.4	-8.1
3	-8.11	-8.42	-9.0	-10.9	-9.0	-9.4
4	-8.75	-7.89	-8.4	-8.0	-8.7	-9.9
5	-8.62	-8.25	-7.8	-7.9	-7.8	-9.1

MD simulation analysis of APRT with ligands and inhibitors for 20ns

MD simulation analysis of DHODH with ligands and inhibitors for 20ns

Rg and RMSD plot of APRT and DHODH (MD 100ns)

8

RMSF and H-bond plot of APRT and DHODH (MD 100ns)

9

MM/PBSA analysis

SI. No.	System	Binding energy(kJ/mol)	van der Waal energy(kJ/mol)	Electrostatic energy(kJ/mol)	Polar solvation energy(kJ/mol)	SASA energy (kJ/mol)
1	APRT-Lig2	-154.063 <u>+</u> 15.676	-188.701 <u>+</u> 9.474	-115.414 <u>+</u> 21.570	173.270 <u>+</u> 18.037	-23.217 <u>+</u> 0.994
2	APRT-Lig3	-204.470 <u>+</u> 22.193	-69.304 <u>+</u> 14.010	-324.792 <u>+</u> 43.249	202.667 <u>+</u> 28.433	-13.042 <u>+</u> 0.984
3	APRT-Inb_A	-108.553 <u>+</u> 14.238	-115.676 <u>+</u> 10.480	-23.520 <u>+</u> 15.749	43.023 <u>+</u> 15.346	-12.380 <u>+</u> 0.939
4	DHODH-Lig2	-132.959 <u>+</u> 17.816	-226.586 <u>+</u> 11.470	-51.384 <u>+</u> 29.086	169.760 <u>+</u> 27.069	-24.749 <u>+</u> 1.067
5	DHODH-Lig3	-232.950 <u>+</u> 19.534	-172.462 <u>+</u> 13.210	-248.339 <u>+</u> 26.261	207.491 <u>+</u> 12.787	-19.639 <u>+</u> 0.870
6	DHODH-Inb_D	-137.251 <u>+</u> 16.784	-207.042 <u>+</u> 9.742	-62.660 <u>+</u> 10.090	154.550 <u>+</u> 11.022	-22.099 <u>+</u> 0.924

Table 3: MM/PBSA analysis of the bound complexes

Per-residue decomposition of binding energy

Fig 7: Per residue decomposition of binding energy of APRT and DHODH with Lig2, Lig3 and inhibitor complexes, respectively

- The present study screened ligands with different filter parameters against APRT and DHODH proteins of *L.donovani* and selected 5 ligands from it.
- After 20ns of MD simulation, it was observed that Ligand 2 and 3 showed good result compared to established inhibitors.
- From the inference of 100ns MD simulation and MM/PBSA analysis, Ligand 3 have the potential to inhibit both proteins and act as antileishmanial agent in treating VL.
- From above result, Ligand 3 showed better binding energy and stability with APRT and DHODH proteins which provide evidence that they could be used for further study.

- [1] Alvar, J., Yactayo, S., and Bern, C. Leishmaniasis and poverty. *Trends in parasitology*, 22(12), 552-557, 2006.
- [2] World Health Organization: Weekly Epidemiological Record (WER). 95(22): 641-652, 2020.
- [3] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., et al. . The Protein Data Bank. *Nucleic Acids Research*, 28(1): 235-242, 2000.
- [4] Pulvertaft, R. J. and Hoyle, G. F. "Stages in the life-cycle of Leishmania donovani". Transactions of the Royal Society of Tropical Medicine and Hygiene, 54(2): 191–196, 1960.
- [5] Sunghwan, K., Paul, A. T., Evan, E. B., Jie, C., Gang, F., et al. PubChem Substance and Compound databases. *Nucleic Acids Research*, 44: 1202-1213 2016.

