Molecular Dynamics Studies on the Interactions between SARS-CoV-2 Spike Protein and hACE2 or mAbs

Weiliang Zhu

wlzhu@simm.ac.cn

Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences

555 Zuchongzhi Road, Pudong, Shanghai, China

Spike protein and viral infection

Cell, 183, 730-738, (2020)

۲

- The first step of SARS-2 infection is the binding of its spike protein to human ACE2.
- The spike protein on the surface of the virus particle is in a state of a trimer.
- The domain to interact with ACE2 is called RBD, which has up- and down- conformations.

Experiments showed contradictory binding affinities

• ACE2-RBD Binding Affinity

Protein coated	$K_{d}(M)$	Method
SARS-CoV-	1.85×10^{-7}	SPR
RBD-His tag		
SARS-CoV-2-	4.42×10^{-8}	SPR
RBD-His tag		

Nature, 581, 221–224 (2020)

• The binding of the RBD of SARS-2 spike to ACE2 is **stronger** than that of SARS

• ACE2-Spike Binding Affinity

The ACE2 binding affinities of RBD and full length spike are contradictory;
Why?

RBD-ACE2 binding affinity simulated by MD simulation

ACE2	Stall Stall	All calculated by 10101/ GDB11 with 100 hs 101D shi				
	A CAR	Energy term	CoV-2-S RBD	CoV-S RBD		
		E_{vdw}	-86.91±0.06	-80.73±0.07		
		E_{ele}	-697.07±0.56	-742.78±0.71		
		E_{gb}	760.94±0.51	812.86±0.67		
	Sale Contraction	E_{np}	-12.05 ± 0.06	-10.34 ± 0.10		
	A A A A A A A A A A A A A A A A A A A	${\it \Delta} H$	-35.10 ± 0.62	-20.98 ± 0.64		
		$-T \varDelta S$	-10.24 ± 0.56	-10.94 ± 0.69		
RBD		ΔG	-24.86 ± 0.59	-10.04±0.66		

ΔG calculated by MM/GBSA with 100 ns MD simulation

Methods: Amber16, Amber ff03, 100 ns MD simulation, 50-100 ns trajectory for MM/GBSA calculation Temperate: 2AJF and 6M0J (SARS RBD-ACE2)

• The binding of ACE2 to RBD of SARS-2 is calculated to be stronger than SARS, which is in well agreement with the experimental results.

Spike-ACE2 binding affinity simulated by MD

	ΔG calc	ulated by MI	M/GBSA wi	th 100 ns M	D simulation
		6ACG	6ACJ	6CS2	6ACK
ACE2	SARS-C	oV-2			
	E_{vdw}	-81.34±0.47	-95.90±0.53	-100.86 ± 0.72	-106.25±0.56
Con Carles	E_{ele}	-816.09±0.59	-796.20±2.59	-763.73±3.59	-763.10±2.86
	E_{gb}	875.10±0.52	866.54±2.59	830.25±3.43	828.67±2.66
	$\sim E_{np}$	-11.14±0.07	-13.98 ± 0.06	-14.61 ± 0.08	-15.21±0.05
the starter of the second second	$\varDelta H$	-33.47 ± 0.71	-39.55±0.56	-48.95±0.95	-55.89±0.56
	$-T\Delta S$	-15.47 ± 0.98	-14.45 ± 0.81	-16.55 ± 0.78	-16.37±0.66
CAREFORD STR	ΔG	-18.00 ± 0.84	-25.10±0.68	-32.40±0.86	-39.52±0.61
	SARS-C	рV			
E A S C A A S C	E_{vdw}	-74.67 ± 0.60	-84.99±0.54	-81.48±0.69	-86.15±0.47
	E_{ele}	18.69 ± 0.66	-53.59±0.56	-109.67±3.05	-120.10 ± 3.29
	E_{gb}	34.91±0.82	122.73 ± 0.68	173.18 ± 3.09	182.77±3.26
	E_{np}	-9.72 ± 0.08	-11.10 ± 0.07	-10.42 ± 0.10	-12.04 ± 0.06
	$\varDelta H$	-24.79±0.61	-26.96±0.56	-28.39 ± 0.70	-35.52±0.54
Spillo	$-T\Delta S$	-14.20 ± 0.62	-14.57 ± 0.80	-16.85 ± 0.74	-14.89±0.67
Jan Spike	ΔG	-10.59±0.62	-12.39±0.68	-11.54±0.72	-20.63±0.60

Methods: Amber16, Amber ff03, 100 ns MD simulation, 50-100 ns trajectory for MM/GBSA calculation

- The calculated ΔG of ACE2 to spike of CoV-2 with different models are always stronger than SARS, which are contradictory to experimental results.
- Different models have different conformation, implying that conformation matters?

Do the RBD-up and –down conformations matter?

RBD-down \rightarrow **RBD-up**

Method: J. Wang, et al., W. Zhu, J. Phys. Chem. B, 2014, 118, 134

Accessible and inaccessible conformations for spike binding ACE2

84.6 °

6ACK

 -106.25 ± 0.56

 -763.10 ± 2.86

828.67±2.66

 -15.21 ± 0.05

 -55.89 ± 0.56

-16.37±0.66

 -39.52 ± 0.61

 -86.15 ± 0.47

 -120.10 ± 3.29

 182.77 ± 3.26

 -12.04 ± 0.06

 -35.52 ± 0.54

-14.89±0.67

 -20.63 ± 0.60

74.0°

6**CS**2

 -100.86 ± 0.72

 -763.73 ± 3.59

830.25±3.43

 -14.61 ± 0.08

 -48.95 ± 0.95

 -16.55 ± 0.78

 -32.40 ± 0.86

 -81.48 ± 0.69

 -109.67 ± 3.05

173.18±3.09

 -10.42 ± 0.10

 -28.39 ± 0.70

 -16.85 ± 0.74

 -11.54 ± 0.72

- RBD-angle was defined to be $\angle D405$ -V633-V991.
- ACE2 was docked to the conformations with different RBD-angles.
- RBD-angle of $\geq 52.2^{\circ}$ is required for binding ACE2, the larger the stronger.
- The experimentally observed weaker SARS2 spike-ACE2 binding can not be interpreted.
- Any other reason affecting the binding of the spike to ACE2? Accessible conformation distribution? 7

Method for conformation sampling

Method:

- Trimers of the SARS and SARS-2 spikes
- 48 replica for each systems
- 100 ns vsREMD simulation with Gromacs5.1.4

J. Wang, et al., Z. Xu, W. Zhu, *Biophysical Journal*, **2020**, *118*, 1009

Significantly different conformation distributions

- The accessible conformations of SARS-2 is 5.5% while that of SARS is 22.7%.
- Transition from inaccessible to accessible conformation of SARS-2 has higher barrier (2.6-4.4 kcal/mol) than that of SARS (1.7 kcal/mol).
- Remarkably, the SARS spike has evenly distributed conformation space, while the SARS-2 are mainly located at inaccessible ones.

- Although the SARS-2 spike RBD has stronger binding affinity to ACE2, the SARS-2 spike has much less accessible conformation and higher transition barrier, making the SARS-2 spike difficult to bind ACE2.
- In terms of infectiousness of SARS-2, human being is quite lucky this time.
- Why does the SARS-2 RBD bind to ACE2 stronger?

The origin of the stronger binding affinity of SARS2 RBD-ACE2

- In comparison with SARS, some mutation enhanced the spike-ACE2 binding of SARS-2.
- Could mutations significantly affect the spike binding mAbs?

C. Peng, W. Zhu, et al., J. Phys. Chem. Lett. 2020, 11, 10482–10488

New variants, new risks?

- A variant harbored a E484K mutation (B.1.351) was first sequenced on 15/12/2020.
- The variant may have stronger binding to ACE2, indicating potential severe infectiousness.
- The neutralization by some mAbs against the variant was weakened, indicating potential immune evasion risk.

• What is the reason of the high infectiousness and diminished neutralization?

Calculated binding affinity of ACE2-RBD harbored E484K mutation

- The E484K mutation of the spike resulted in a strong binding to ACE2 than WT, indicating high infectiousness of the new variant.
- Any changes in binding mAbs?

Predicted binding affinity of the variant RBD to 25 mAbs

- > Only 7K9Z (4%) showed increased binding affinity;
- > Indeed, 3 of them were reported having decreased affinity.

Contribution of the residue E484/K484 to ΔG

 \geq E484 is favorable to binding ACE2 in 21/25 (86%) systems, while K484 is only in 3/25 (12%) (7CWO);

- > The negative E484 is attractive to the mAb 7CWO, while the K484 is repulsive to;
- > 7 systems have ΔG weakened by ≥5 kcal/mol, indicating high immune evasion risk.

Effect of E484K mutation on the spike-ACE2 binding

L Wu, W. Zhu, et al., Briefings in Bioinformatics 2022, 23 (1), bbab383,

Other potential mutation with immune evasion risk predicted

mAb-Spike interaction:

- Besides E484, there are additional 10 residues that are important to binding mAbs (>30% mAbs);
- Among them, Y489, Y449, F486, Q493, F456 and N487 are important to binding ACE2, their mutations may result in weaker infectiousness;
- But, the mutations of F490, V483, G485 and S494 might be highly risk to infectiousness and immune evasion.

Infectiousness of Omicron vs Delta

- Omicron variant (B.1.1.529) was first reported to WHO on 24/11/2021;
- No experimental results reported on its transmissibility and immune risk;

Omicron has 15 mutations on RBD, while Delta has 4.

Calculated and Experimentally Determined Binding Affinity

Binding affinity of RBD-ACE2

Binding affinity of RBD-mAbs

- RBD_{Omicron} possesses much weaker binding affinity to
 ACE2 than RBD_{Delta}
- Omicron variant has high risk of immune evasion

Methods: Gromacs2020.2, Amber ff14SB, 50-200 ns MD simulation trajectory for MM/GBSA calculation

L Wu, W Zhu, et al., Signal Transduction and Targeted Therapy 2022, 7 (1), 8

Summary

- 1. The RBD of SARS-2 spike has stronger binding affinity to ACE2 than SARS, but the accessible conformation of the SARS-2 spike is significantly less than SARS spike, which should be one of the reasons why SARS-2 spike has weaker binding affinity.
- 2. E484K mutant has weaker binding affinity to most mAbs due to the weakened electrostatic interaction or the increased electrostatic repulsion, possibly leading to high risk of immune evasion.
- 3. Omicron RBD has lower binding affinity than Delta RBD to ACE2, but has great potential risk of immune evasion to most mAbs.

Publications

- Leyun Wu¹, Liping Zhou¹, Mengxia Mo¹, Tingting Liu¹, Chengkun Wu¹, Chunye Gong, Kai Lu, Likun Gong^{*}, Weiliang Zhu^{*}, Zhijian Xu^{*}, SARS-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. *Signal Transduction and Targeted Therapy* 2022, 7 (1), 8.
- Leyun Wu¹, Cheng Peng¹, Yanqing Yang, Yulong Shi, Liping Zhou, Zhijian Xu^{*}, Weiliang Zhu^{*}, Exploring the immune evasion of SARS-2 variant harboring E484K by molecular dynamics simulations. *Briefings in Bioinformatics* 2022, 23 (1), bbab383, DOI: <u>https://doi.org/10.1093/bib/bbab383</u>
- Cheng Peng,# Zhengdan Zhu,# Yulong Shi, Xiaoyu Wang, Kaijie Mu, Yanqing Yang, Xinben Zhang, Zhijian Xu,* and Weiliang Zhu*, Computational Insights into the Conformational Accessibility and Binding Strength of SARS-2 Spike Protein to Human Angiotensin-Converting Enzyme 2, *J. Phys. Chem. Lett.* 2020, *11*, 10482–10488

Acknowledgment

- Prof. Zhijian Xu
- Dr. Cheng Peng
- Miss. Leyun Wu
- Miss. Liping Zhou
- Dr. Zhengdan Zhu
- Prof. Likun Gong
- Miss Mengxia Mo

Thank You for Your Attention

TAXABLE !!